期刊文献+

狭缝位置对透气砖吹氩热梯度应力的影响 被引量:3

Influence of Slit's Position to the Thermal Gradient Stress of Purging Plug During Argon Blowing
原文传递
导出
摘要 为延长透气砖的使用寿命,对其吹氩引起的热梯度应力场进行了模拟分析,以确定狭缝在其截面上的合理位置。首先根据透气砖工作特点和研究目的,在适当简化其结构和边界条件的基础上,建立了它的二维平面应变有限元模型。然后在保持狭缝规格一定的前提下(0.20 mm×20 mm×24),研究了其相对位置对透气砖热梯度应力场的影响。研究结果表明:1)透气砖中心为等应力区,高应力则区位于狭缝周围;2)狭缝径向位置对透气砖最大热应力的影响不大;3)对于本次分析,当狭缝径向位置为5-10 mm、透气砖直径为140 mm、狭缝偏转角度为30°-45°时,透气砖的热梯度应力较低。 For extending the life of purging plug,its thermal gradient stress fields causing by argon blowing are simulated to determine the slits' reasonable position on its section.Firstly,based on the working properties of the purging plug and the purpose of research,its two-dimension plane strain finite element models are built by simplifying the structure and the boundary conditions of it. Then the influence of the slits' relative position to the thermal gradient stress distribution of purging plug is researched by keeping their specification as definite value(0.20 mm×20 mm×24).The results show: 1) the isostress area is in the center of purging plug,and the areas of higher thermal gradient stress are around the slits;2) the influence of the slit's radial position to the highest thermal stress is not obviously;3) to this analysis,the thermal gradient stress of the purging plug is lower if the radial position of the slits is between 5~10 mm,its diameter is about 140mm and the slits' deflecting angle is between 30°~45°.
出处 《武汉理工大学学报》 CAS CSCD 北大核心 2010年第7期8-11,共4页 Journal of Wuhan University of Technology
基金 河南省杰出人才创新基金(74200510011)
关键词 透气砖 狭缝位置 热梯度应力 有限单元法 purging plug slit's position thermal gradient stress finite element method
  • 相关文献

参考文献9

  • 1Wang Zhigang, Li Nan, Kong Jianyi, et al. Research on Thermomechanical Stress of Long Nozzle and Improvement Measures[J]. Refractories Applications and News, 2005,10(1) : 13-17.
  • 2Poirier J, Gasse A, Boisse P. Thermo-mechanical Modelling of Steel Ladle Refractory Structures[J ]. International Ceramics, 2005,54(3) : 182-188.
  • 3陈文娟,罗会信,姜根成.新型170t钢液罐热应力仿真分析[J].铸造技术,2008,29(4):528-530. 被引量:4
  • 4Gruber D, Andreev L, Harmuth H. FEM Simulation of the Thermomechanical Behaviour of the Refractory Lining of a Blast Furnace[J]. Joural of Material Processing Technology, 2004(155) :1539-1543.
  • 5Iuga M, Raether F. FEM Simulations of Microstructure on Thermoelastic Properties of Sintered Seramies[J ]. Journal of the European Ceramic Society, 2007(27) : 511-516.
  • 6Mathias J D, Tessier-Doyen N. Homogenization of Glass/Alumina Two-phase Materials Using a Cohesive Zone Model [J ]. Computational Materials Science, 2008,43(4) 1081-1085.
  • 7Joliff Y, Absi J, Glandus J C, et al. Experimental and Numerical Study of the Thermomechanical Behaviour of Refractory Model Materials[J]. Journal of the European Ceramic Society, 2007(27) : 1513-1520.
  • 8胡宝玉,徐延庆,张宏达.特种耐火材料技术手实用手册[M].北京:冶金工业出版社,2005.
  • 9Sands C M, Henderson R J, Chandler H W. A Three Dimensional Computational Model of the Mechanical Response of a Dual-phase Ceramic[J].Computational Materials Science, 2007,39(4): 862-870.

二级参考文献3

共引文献4

同被引文献13

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部