期刊文献+

一种新的抵抗能量攻击的椭圆曲线标量乘算法

A New Kind of Elliptic Curve Scalar Multiplication Algorithm Resistant to Power Attacks
原文传递
导出
摘要 为了抵抗能量攻击形式的边信道攻击,提出了一种新的椭圆曲线标量乘算法-分拆窗口算法。该方法以改进的NAFw算法为基础,不仅可以抵抗SPA(简单能量攻击)而且可以抵抗SPA/DPA(差分能量攻击)联合攻击和抵抗SPA/二阶DPA联合攻击,可以根据需要选择合适的窗口宽度,而且适用于存储受限的设备中。分析表明:这种算法比整体窗口算法效率较高。 It is proposed a new kind of Elliptic curve scalar multiplication algorithm resistant to side channel attacks based on power attacks-fractional window algorithm.Based on the improved NAFw algorithm,this paper presents an efficient and flexible scheme resisting power attacks-the fractional windows.The fractional windows are able to resist not only SPA but also SPA /DPA combined attacks and SPA/2nd-order DPA combined attacks.The fractional windows allow us to select the appropriate window width and offer great advantages in the frame of resource-constrained devices.Analysis results show that the fractional windows are more efficient than integral windows.
出处 《武汉理工大学学报》 CAS CSCD 北大核心 2010年第7期156-159,186,共5页 Journal of Wuhan University of Technology
基金 国家自然科学基金(60473029 60673072) 国家基础研究973项目(2007CB311201) 江西师范大学博士启动基金(2613)
关键词 边信道攻击 标量乘 简单能量攻击 差分能量攻击 分拆窗口 side channel attacks scalar multiplication simple power analysis differential power analysis fractional window
  • 相关文献

参考文献12

  • 1Koblitz Neal. The State of Elliptic Curve Cryptography[J]. Designs,Codes and Cryptography,2000,19:173-193.
  • 2刘双根,李萍,胡予濮.椭圆曲线密码中标量乘算法的改进方案[J].计算机工程,2006,32(17):28-29. 被引量:7
  • 3Zhou Yongbin, Feng Dengguo. Side-channel Attacks:Ten Years After Its Publication and the Impacts on Cryptographic Module Security Testing[ EB/OL][ 2006-09-01]. htttp://eprint, iacr. org.
  • 4Coron J. Resistance Against Differential Power Analysis for Elliptic Curve Cryptosystems[C]//CHES' 99, LNCS1717. Berlin: Springer-verlag, 1999 : 292-302.
  • 5MOller B. Securing Elliptic Curve Point Multiplication Against Side-channel Attacks[C]//ISC' 01, LNCS2200. Berlin: Springer-verlag, 2001 : 324-334.
  • 6Smart N P, Liardet P Y. Preventing SPA/DPA in ECC Systems Using the J acobi Form[ C]//CHES'01, LNC82162. Berlin: Springer- verlag, 2001 : 391-401.
  • 7Oswald E, Aigner. Randomized Addition-subtraction Chains as a Countermeasures Against Power Attacks[ C]//CHES'O1, LNCS2162. Berlin. Springer-verlag, 2001 : 39-51.
  • 8Okeya, Sakurai. On Insecurity of the Side Channel Attack Countermeasure Using Addition-subtraction Chains Under Distin- guishability Between Addition and Doubling[CJ//ACISP'02,LNCS2384. Berlin:Springer-Verlag,2002:420-435.
  • 9Walter C D. Breaking the Liadet-Smart Randomized Exponentiation Algorithm[C]//Smart Card Research and Advanced Application Conference. [ S. l. ] : USENIX Association, 2002:59-68.
  • 10Yen S M, Joye M. Checking Before Output May not Be Enough Against Fault-based Cryptanalysis[J ]. IEEE Transactions on Computers, 2000,49 (9) : 967-970.

二级参考文献7

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部