期刊文献+

不同缺失值填充方法在全国血吸虫病监测资料中的比较研究 被引量:1

Comparison of the Three Imputaton Methods of Missing Values for the Schistosomiasis Surveillance Data in China
下载PDF
导出
摘要 目的以全国血吸虫病疫情监测资料为数据来源,比较不同缺失值处理方法对模拟缺失值的处理结果 ,为确定适用于处理该资料缺失值的方法提供依据。方法从资料中分别随机抽取10%、20%、30%、40%、50%的观测值作为假设缺失值,采用均值填充法、热平台填充法和多重填充法对模拟缺失值进行填充,分别从分布特征、准确度和精确度三个方面评价缺失值的填充效果。结果不同假设缺失比例下,三种填充方法填充后的结果与原始值相比差异均无统计学意义。多重填充方法填充后结果精确度较好且分布特征与原始值符合度最好。结论多重填充技术较为适合处理该资料中缺失比例较少的缺失值。 Objective To compare the three imputation methods of missing values and provide scientific basis for the best imputation methods of missing values for the schistosomiasis surveillance data in China.Methods The mean,hot deck and multiple imputation techniques were used to impute the hypothesized missing values which were selected randomly from the schistosomiasis surveillance data with 10%,20%,30%,40% and 50%,respectively and the results of imputation were compared based on three aspects of distribution characteristic,accuracy and precision.Results There were no significant difference among the results of the three imputation methods and the original values.For the multiple-imputation method,it had better accurancy and distribution characteristic compared with other methods.Conclusion The multiple-imputation method was the best technique to handle with the missing values in the schistosomiasis surveillance data.
出处 《中国卫生统计》 CSCD 北大核心 2010年第2期125-128,共4页 Chinese Journal of Health Statistics
基金 国家自然科学基金重大项目资助(编号30590374) 复旦大学科创行动19期资助(编号C-19-02) 国家科技重大专项资助(2008ZX10004-011) 复旦大学重点学科创新人才培养计划基金资助项目
关键词 血吸虫病 疾病监测 缺失值 多重填充 Schistosomiasis Disease surveillance Missing value Multiple imputation
  • 相关文献

参考文献9

  • 1Zhao GM,Zhao Q,Jiang QW,et al.Surveillance for schistosomiasis japonica in China from 2000 to 2003.Acta Tropica,2005,96:288-295.
  • 2赵根明,王立英,赵琦,陈贤义,肖东楼,何纳,韦建国,姜庆五.2000~2004年全国血吸虫病监测点疫情分析[J].中国寄生虫学与寄生虫病杂志,2006,24(1):4-9. 被引量:30
  • 3岳勇,田考聪.数据缺失及其填补方法综述[J].预防医学情报杂志,2005,21(6):683-685. 被引量:30
  • 4姜庆五,郝阳,杨维中.中国世纪血吸虫病.香港:香港文汇出版社,2007.
  • 5Pérez A,Dennis RJ,Gil JF,et al.Use of the mean,hot deck and multiple imputation techniques to predict outcome in intensive care unit patients in Colombia.Stat Med,2002,21:3885-3896.
  • 6Little RJ,Yosef M,Cain KC,et al.A hot-deck multiple imputation procedure for gaps in longitudinal data on recurrent events.Stat Med,2008,27:103-120.
  • 7周艺彪,赵根明,姜庆五.多重填充方法评估日本血吸虫病感染率[J].中国公共卫生,2004,20(3):286-288. 被引量:4
  • 8Patrician PA.Multiple imputation for missing data.Research in Nursing & Health,2002,25:76-84.
  • 9Harel O,Zhou XH.Multiple imputation:review of theory,implementation and software.Stat Med,2007,26:3057-3077.

二级参考文献39

  • 1赵根明,王立英,赵琦,陈贤义,肖东楼,何纳,韦建国,庄建林,姜庆五.2000~2003年全国血吸虫病疫情监测结果分析[J].中国血吸虫病防治杂志,2004,16(6):405-410. 被引量:11
  • 2Rubin D.Inference and missing data[J]. Biometrika,1976,63(3):581-592.
  • 3Little RJA,Rubin DB.Statistical Analysis with Missing Data[M].New York:Wiley and Sons,Inc.1987.
  • 4Nordheim EV.Inference from nonrandomly missing data:An example from a genetic study on Turner' s Syndrome [J].Am Statist Assoc,1984,79:772-780.
  • 5Horton NJ,Laird NM.Maximum likehood analysis of generalized linear models with missing covariates [J].Statist Meth Med Res,1988,8(1):37-50.
  • 6Allison PD.Multiple imputation for missing data:A cautionary tale [J].Sociological Methods and Research,2000,28(3):301-309.
  • 7Bello AL.Imputation techniques in regression analysis:Looking closely at their implementation [J].Computational Statistics and Data Analysis,1995,20:45-57.
  • 8Rao JNK,Shao J.Jackknife variance estimation with survey data under hot deck imputation [J].Biometrika,1992,79:811-822.
  • 9Rubin DB.Multiple imputations in sample surveys [J].Am Statist Assoc,1978:20-34.
  • 10Meng XL,Rubin DB.Performing likelihood ration tests with multiple imputed data sets [J ].Biometrika,1992,79 (1):103-111.

共引文献60

同被引文献7

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部