摘要
设f=Ordp(q),ξp为本原p次单位根,γ∈Z[ξp]。若f是奇数且γγ=n(其中n∈Z,q|n),加上别的一些条件,Arasu和Pot证明了γ具有形式:γ=∑ei=1ai∑f-1j=0ξiqjp(其中p-1=ef),并且指出如果条件“f是奇数”能去掉的话,将是一个很好的结果.本文作者研究了f为偶数的情形并得到相应的结论。
Let f= Or d p(q), ξ p be a primitive p th root of unity, γ∈Z ξ p . Suppose that f is odd and γ=n (where n∈Z,q|n ). By some assumption, K.T.Arasu and A.Pott obtain that γ can be written as the form γ=∑ e i=1 a i∑ f-1 j=0 ξ iq j p(where p-1=ef ). And note that it would be nice if the condition “ f is odd” could be removed. In this paper, the author will deal with the case “ f is even” and get a corresponding result.
出处
《北京大学学报(自然科学版)》
CAS
CSCD
北大核心
1999年第1期13-17,共5页
Acta Scientiarum Naturalium Universitatis Pekinensis
关键词
分圆域
差集
素理想
分圆方程
不可能性
cyclotomic fields
difference sets
prime ideal
Galois group