期刊文献+

[0,∞)区间的N范数及广义自相关系数k的计算方法 被引量:1

N-Norm on [0,∞) and Method for Calculating Generalized Self-Correlation Coefficient k
下载PDF
导出
摘要 三角范数理论中的N范数(N-norm)是柔性逻辑中非运算的数学模型。在柔性逻辑学研究中,模糊命题和它的模糊非命题之间的相关性用连续变化的广义自相关系数k∈[0,1]来刻画。非算子是随广义自相关系数k的变化而连续变化的算子簇。由于在现实生活中,很多逻辑推理控制必须在其自身的定义域内完成,文章以三角范数作为柔性逻辑研究的数学工具,定义了[0,∞)区间上的N范数、N性生成元和N性生成函数,并研究了相关主要性质;证明了N范数生成定理;讨论了广义自相关系数的计算;给出了由N性生成函数直接生成N范数、计算不动点l和计算广义自相关系数k的方法。为[0,∞)区间上的连接词运算模型提供了数学生成方法。 N-norm in triangular norm theory is the mathematical model of NOT operator in flexible logic.The correlation between each fuzzy proposition and its corresponding fuzzy NOT proposition is described by a continuously changeable generalized self-correlation coefficient k∈.NOT operator is a continuously changeable operator cluster with continuous change of k.In the real world,many logic reasoning controls must be accomplished respectively in their own definition domains.This paper uses triangular norm theory as an important mathematical tool to study the flexible logic on interval [0,∞).N-norm,N generator and N generating function are defined and their related main properties are studied.Generation theorem of N-norm is proven.The method of generating N-norm,that of calculating fixed point l and that of calculating generalized self-correlation coefficient are provided.These research results provide the important theoretical base for the construction of propositional connective model on [0,∞) interval.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2010年第2期270-275,共6页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(60273087) 陕西省自然科学基础(2007F45) 西北工业大学基础研究基金重点(W018101)资助
关键词 范数 柔性逻辑 广义自相关系数 生成元 生成函数 不动点 artificial intelligence norm flexible logic generalized self-correlation coefficient generator generating function fixed point
  • 相关文献

参考文献4

  • 1陈志成.复杂系统中分形混沌与逻辑的相关性推理研究:[博士学位论文].西安:西北工业大学,2004.
  • 2Esteva F,Trillas E,Domingo X.Weak and Strong Negation Functions for Fuzzy Set Theory.Int Sym on Multiple-valued Logic,1981.
  • 3Ovchinnikov S V.General Negations in Fuzzy Set Theory.J of Math Anal & Appli,1983,92:234-239.
  • 4Ovchinnikov S V.Similarity Relations Fuzzy Partitions and Fuzzy Orderings.Fuzzy Sets and Systems,1991,40:107-126.

同被引文献9

  • 1陈志成.[D].西安:西北工业大学,2004.
  • 2Zadeh L A. Fuzzy sets as a basis for a theory of possibility[J]. Fuzzy Sets and Systems, 1978,1 (1) : 3-28.
  • 3Luo Xu dong,Jennings N R. A spectrum of compromise aggre- gation operators for multi-attribute decision making[J]. Artifi- cial Intelligence, 2007,171 (2/3) : 161-184.
  • 4Mao Ming-yi, Chen Zhi-cheng, He Hua-can. A new uniform neu- ron model of generalized logic operators based on [-a, b] [J]. In- ternational Journal of Pattern Recognition and Artificial Intelli- gence, 2006,20(2) : 159-171.
  • 5贾澎涛.基于柔性逻辑的时间序列数据挖掘[D].西安:西北工业大学,2008.
  • 6Luo Xu-dong, Lee J H-M, Leung H-f, et al. Prioritised fuzzy constraint satisfaction problems: axioms, instantiation and vali- dation[J]. Fuzzy Sets and Systems, 2003,136(2) : 151-188.
  • 7Luo Xu-dong, Zhang Cheng-qi, Cai Jing-qiu. The Weighting Is- sue in Fuzzy Logic[J]. Informatica: An International Journal of Computing and Informatics, 1997,21 (2) : 255-262.
  • 8何华灿,刘永怀,白振兴,艾丽蓉,王瑛.一级泛非运算研究[J].计算机学报,1998,21(S1):24-28. 被引量:6
  • 9范艳峰,何华灿.[0,∞]区间N范数的定义及生成定理[J].计算机科学,2010,37(5):190-193. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部