期刊文献+

氮氧自由基自旋探针R1在特定空间位点上对bacteriorhodopsin产生颜色调谐效应的机理分析 被引量:1

Color Tuning in Bacteriorhodopsin Induced by Nitroxide Free Radical Spin Probe R1 at Specific Site
原文传递
导出
摘要 蛋白质结构研究中的氮氧自由基自旋探针R1,在特定的空间位置上会对bacteriorhodopsin的结构与功能产生影响。该文作者发现:将bacteriorhodopsin中远离视黄醛的第192位Gly替换为自旋探针R1后,产生了显著的颜色调谐,最大吸收峰有28nm的蓝移。但用R1替换Gly192邻近的Gly195和Ala196,未产生颜色调谐效应;替换螺旋E末端的Val130和Tyr131,以及螺旋B末端的Leu62,均无颜色调谐。进一步表征bacteriorhodopsin光循环中间体O和M的衰减过程发现:R1替换前,Gly192Cys(+)的O态衰减寿命约为847.7ms;但替换后,其衰减显著加快至308.2ms。M态的衰减寿命在R1替换后反而显著延长,尤其是慢组分Ms从24.8ms延长至83.6ms。Gly192R1的顺磁共振信号揭示:该位置上的R1处于低运动性状态,表明R1可能与局部环境的结构组分发生了直接作用。晶体结构分析发现:R1可能直接与质子传递通道中的"三体水分子"作用。由于"三体水分子"通过长程的氢键网络与视黄醛活性中心相连,并且参与质子在bacteriorhodopsin中的传递,因此自旋探针R1在膜表面Gly192位置处产生的颜色调谐,可能是一种分子内的长程作用结果。 Nitroxide Spin probe R1 widely used in protein structural research may affect structure and function of bacteriorhodopsin at specific site. This work reported a significant color tuning, about 28 nm blue shift of maximum absorption, happened at Gly192 substituted with a spin probe R1. However, no color tuning at Gly195 and Ala196, which are close to Gly192, was observed. Color tuning at Val130 and Tyr131 on helix E and Leu62 on helix B was not observed either. Analysis of intermediate O in bacteriorhodopsin photocycle showed that the lifetimes of O was about 847.7ms in Gly192Cys(+) and decreased to 308.2 ms in Gly192R1. The decay of intermediate M was significantly prolonged after R1 substitution. Especially the slow decay component Ms had a lifetime of 24.8 ms in Gly192Cys (+) and a lifetime of 83.6ms in Gly192R1. The electron paramagnetic resonance signal of Gly192R1 showed that R1 at this site was in an immobile state, and might have strong tertiary contacts with nearby structural elements. Structural analysis suggested that the spin probe R1 at Gly192 might have a direct interaction with the "water trimer" in bacteriorhodopsin proton transport channel. Since the "water trimer" is connected with the retinal active site through long-distance hydrogen bonded network and participates in proton translocation, the authors suggest that color tuning induced by spin probe R1 at Gly192 may be caused by a long-range interaction within bacteriorhodopsin.
出处 《生物物理学报》 CAS CSCD 北大核心 2010年第4期322-333,共12页 Acta Biophysica Sinica
基金 中国科学院研究生院院长基金(O95102GN00)~~
关键词 颜色调谐 视黄醛 质子传递 光循环 自旋标记 Color tuning Retinal Proton transport Photocycle Spin labeling
  • 相关文献

参考文献26

  • 1Lanyi JK. Proton transfers in the bacteriorhodopsin photocycle. Biochim Biophys Acta, 2006, 1757 (8): 1012-1018.
  • 2Hirai T, Subramaniam S, Lanyi JK. Structural snapshots of conformational changes in a seven-helix membrane protein: lessons from bacteriorhodopsin. Curr Opin Struct Biol, 2009, 19(4): 433-439.
  • 3Lanyi JK. Bacteriorhodopsin. Annu Rev Physiol, 2004, 66: 665-688.
  • 4Hoffmann M, Wanko M, Strodel P, Konig PH, Frauenheim T, Schulten K, Thiel W, Tajkhorshid E, Elstner M. Color tuning in rhodopsins: the mechanism for the spectral shift between bacteriorhodopsin and sensory rhodopsin Ⅱ. J Am Chem Soc, 2006, 128(33): 10808-10818.
  • 5Mogi T, Stem L J, Marti T, Chao BH, Khorana HG. Aspartic acid substitutions affect proton translocation by bactedorhodopsin, Proc NaU Acad Sci USA, 1988, 85(12): 4148-4152.
  • 6Subramaniam S, Greenhalgh DA, Rath P, Rothschild K J, Khorana HG. Replacement of leucine-93 by alanine or threonine slows down the decay of the N and O intermediates in the photocycle of bacteriorhodopsin: implications for proton uptake and 13-cis-retinal all-trans-retinal reisomerization. Proc Natl Acad Sci USA, 1991, 88(15): 6873-6877.
  • 7Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK. Structure of bacteriorhodopsin at 1.55 A resolution. J Mol Biol, 1999, 291(4): 899-911.
  • 8Yoshitsugu M, Shibata M, Ikeda D, Furutani Y, Kandori H. Color change of proteorhodopsin by a single amino acid replacement at a distant cytoplasmic loop. Angew Chem Int Ed Engl, 2008, 47(21): 3923-3926.
  • 9Klare JP, Steinhoff HJ. Spin labeling EPR. Photosynth Res, 2009, 102(2-3): 377-390.
  • 10Columbus L, Hubbell WL. A new spin on protein dynamics. Trends Biochem Sci, 2002, 27(6): 288-295.

同被引文献11

  • 1Yao BL,Xu DL,Hou X,Hu KS,Wang AJ.Kinetics of picosecond laser pulse induced charge separation and proton transfer in bacteriorhodopsin.J Biomed Opt,2003,8(1):48-52.
  • 2Frydrych M,Lensu L,Aschi C,Parkkinen S,Parkkinen J,Jaaskelainen T.Model of photovoltage response of bacteriorhodopsin in PVA films.Comput Nanosci,2001,2:5-8.
  • 3Oesterhelt D,Stoeckenius W.Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane.Methods Enzymol,1974,31:667-678.
  • 4Xu B,Chen DL,Hu KS.The improvement of culture of Halobacterium halobium and purification of PM.Prog Biochem Biophys,2002,29(5):827-828.
  • 5Henderson R,Jubb JS,Whytock S.Specific labeling of the protein and lipid on the extracellular surface of purple membrane.J Mol Biol,1978,123:259-274.
  • 6Chen DL,Lu YJ,Sui SF,Xu B,Hu KS.Oriented assembly of purple membrane on solid support,mediated by molecular recognition.J Phys Chem B,2003,107:3598-3605.
  • 7Green NM.Spectrophotometric determination of avidin and biotin.Methods Enzymol,1970,16:418-424.
  • 8Krebs MP,Isenbarger TA.Structural determinants of purple membrane assembly.Biochim Biophys Acta,2000,1460:15-26.
  • 9Bamberg E,Dencher NA,Fahr A,Heyn MP.Transmembraneous incorporation of photoelectrically active bacteriorhodopsin inplanar lipid bilayers.Proc Natl Acad Sci USA,1981,78:7502-7506.
  • 10Miyake J,Hara M.Molecular handling of photosynthetic proteins for molecular assembly construction.Adv Biophys,1997,34:109-126.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部