期刊文献+

关于“可得”与“不可得”无限——与张伟平商榷 被引量:1

With Respect to "Attainable" and "Unattainable" Infinity
下载PDF
导出
摘要 张伟平对文[2]中提及的关于可得无限与不可得无限的层次区分概念存在十分严重的错误理解.这种错误的理解会在数学教学中引起混乱.要正确解读康托(Cantor)(其实是由多宾斯基(Dubinsky)命名)的所谓"可得"与"不可得"无限的本来含义,不应忽略近现代数学、逻辑,尤其是集合论的发展及其对数学研究对象描述方式的影响. The concept of "attainable" and "unattainable" infinity,which was quoted from [2] was completely misread by ZHANG Wei-ping in her note [1].This mistake could lead to ideological confusion in the process of teaching and studying.To understand the essence of "attainable" and "unattainable" infinity,which was inferred by Cantor(as a matter of fact,it was named by Dabinsky),it should be based on the development of set theory and combination with the modern mathematics and logic.
作者 谢琳 惠俊烜
出处 《数学教育学报》 北大核心 2010年第2期73-74,98,共3页 Journal of Mathematics Education
基金 国家自然科学基金项目——低维流形中若干问题的研究(10771023)
关键词 无限 不可得无限 可得无限 集合 集合论 infinity attainnable infinity unattainable infinity sets sets theory
  • 相关文献

参考文献4

  • 1张伟平.文科学生学习微积分前对无限的认识层次分析[J].数学教育学报,2006,15(3):54-59. 被引量:12
  • 2Dubinsky, Kirk Weller, Nichael A McDonald. Some Historical Issues and Paradoxes Regarding the Concept of Infinity: an APOS-based Analysis(I) [J]. Educational Studies in Mathematics, 2005, (58): 335-359.
  • 3Moore A W. Abriefhistory of Infinity [J]. Scientific American, 272(4):112-116.
  • 4Moore A W. The Infinite [M]. London: 2nd ed., Routledge & Paul, 1999.

二级参考文献3

  • 1顾光辉,吕朝阳.实无限与潜无限视角下的极限概念[J].数学教育学报,2004,13(3):66-67. 被引量:14
  • 2Dubinsky,Kirk Weller,Michael A McDonald.Some Historical Issues and Paradoxes Regarding the Concept of Infinity:an APOS-based Analysis[J].Educational Studies in Mathematics,2005,(58):335-359.
  • 3Dubinsky,Michael A McDonald.APOS:One Constructivist Theory of Learning in Undergraduate Mathematics Education Research[M].The China-Japan-US Seminar on Mathematical Education,1993.

共引文献11

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部