期刊文献+

适用于小样本问题的具有类内保持的正交特征提取算法 被引量:4

An Orthogonal Feature Extraction Method Based on the Within-class Preserving for Small Sample Size Problem
下载PDF
导出
摘要 在人脸识别中,具有正交性的特征提取算法是一类有效的特征提取算法,但受到小样本问题的制约.本文在正交判别保局投影的基础上,提出了一种适用于小样本问题的具有类内保持的正交特征提取算法.算法根据同类样本之间的空间结构信息,重新定义了类内散度矩阵与类间散度矩阵,进而给出了一个新的目标函数.然而新的目标函数对于人脸识别问题,同样存在着小样本问题.为此本文将原始数据空间降到一个低维的子空间,从而避免了总体散度矩阵奇异,并在理论上证明了在该子空间中求解判别矢量集,等价于在原空间中求解判别矢量集.人脸库上的实验结果表明本文算法的有效性. Orthogonal feature extraction methods are widely employed to enhance the discriminatory information for the face recognition task,but often suffer the small sample size problem which arises if the number of samples is smaller than the dimensionality of samples.To solve this problem,an orthogonal feature extraction method based on the within-class preserving is proposed.The proposed method redefines the within-class and between-class scatter matrices according to the space information among samples belonging to the same class,and then gives the new objective function.This method may encounter the small size sample problem when it is applied to face recognition task,and so we firstly map the original space into a low dimensional subspace,then the singularity of the total-scatter matrix can be avoided in this low dimensional subspace.It is proved that the discriminant vectors derived in this low dimensional subspace are equal to the discriminant vectors derived in the original space.Experimental results on face database demonstrate the effectiveness of the proposed method.
出处 《自动化学报》 EI CSCD 北大核心 2010年第5期644-649,共6页 Acta Automatica Sinica
基金 国家自然科学基金(60873036) 国家教育部博士点基金(200702170-51) 中央高校基本科研业务专项资金资助~~
关键词 特征提取 小样本 目标函数 总体散度矩阵 Feature extraction small size sample objective function total-scatter matrix
  • 相关文献

参考文献15

  • 1Belhumeur P N, Hespanha J P, Kriegam D J. Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Transaztions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711--720.
  • 2Swets D L, Weng J. Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(8): 831-836.
  • 3Foley D H, Sammon J W. An optimal set of discriminant vectors. IEEE Transactions on Computers, 1975, 24(3): 281-289.
  • 4杨健,涂庆华,杨静宇.快速Foley-Sammon鉴别变换及脸象鉴别[J].中国图象图形学报(A辑),2002,7(1):1-5. 被引量:6
  • 5高秀梅,杨静宇,金忠,陈才扣.基于核的Foley-Sammon鉴别分析与人脸识别[J].计算机辅助设计与图形学学报,2004,16(7):962-967. 被引量:10
  • 6Zheng W M, Zhao L, Zhou C. Foley-Sammon optimal discriminant vectors using kernel approach. IEEE Transactions on Neural Networks, 2005, 16(1): 1-9.
  • 7Song F X, Liu S H, Yang J Y. Orthogonalized fisher discriminant. Pattern Recognition, 2005, 38(2): 311-313.
  • 8He X F, Yan S C, Hu Y, Niyogi P, Zhang H J. Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
  • 9Cai D, He X F, Han J W, Zhang H J. Orthogonal Laplacianfaces for face recognition. IEEE Transactions on Image Processing, 2006, 15(11): 3608-3613.
  • 10Zhu L, Zhu S N. Face recognition based on orthogonal discriminant locality preserving projections. Neurocomputing, 2007, 70(7-9): 1543-1546.

二级参考文献27

  • 1彭辉,张长水,荣钢,边肇祺.基于K-L变换的人脸自动识别方法[J].清华大学学报(自然科学版),1997,37(3):67-70. 被引量:69
  • 2Cheng Yongqing,Pattern Recognition,1992年,25卷,1期,101页
  • 3Liu Ke,Pattern Recognition,1992年,25卷,7期,731页
  • 4Hong Ziquan,Pattern Recognition,1991年,24卷,4期,317页
  • 5Wilks S S. Mathematical Statistics [M]. New York: Wiley,1962
  • 6Duda R, Hart P. Pattern Classification and Scene Analysis [M]. New York: Wiley, 1973
  • 7Belhumeur Peter N, Hespanha Joao P, Kriegam David J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720
  • 8Foley Donald H, Sammon John W, Jr. An optimal set of discriminant vectors [J]. IEEE Transactions on Computers,1975, 24(3): 281~289
  • 9Guo Yuefei, Shu Tingting, Yang Jingyu, et al. Feature extraction method based on the generalized fisher discriminant criterion and facial recognition [J]. Pattern Analysis and Application, 2001, 4(1): 61~66
  • 10Vapnik Vladimir N. The Nature of statistical Learning Theory [M]. New York: Springer-Verlag, 1995

共引文献24

同被引文献35

  • 1孙权森,曾生根,王平安,夏德深.典型相关分析的理论及其在特征融合中的应用[J].计算机学报,2005,28(9):1524-1533. 被引量:89
  • 2袁小芳,王耀南.基于混沌优化算法的支持向量机参数选取方法[J].控制与决策,2006,21(1):111-113. 被引量:55
  • 3吕志军,杨建国,项前,王晓玲.基于支持向量机的纺纱质量预测模型研究[J].控制与决策,2007,22(6):693-696. 被引量:17
  • 4Turk M and Pentland A. Eigenfaces for recognition[J]. Cognitive Neurosci, 1991, 3(1): 71-86.
  • 5Belhumeur P N and Kriegman D J. Eigenfaces vs fisherfaces: recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19: 711-720.
  • 6Tenenbaum J B, De Silva V, and Langford J C. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290: 2319-2323.
  • 7Rowies S and Saul L. Nonliear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290: 2323-2326.
  • 8Belkin M and Niyogo P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373-1396.
  • 9He X, Niyogi P, and Han J. Face recognition using laplacianfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
  • 10He X F, Cai D, and Yan S C, et al.. Neighborhood preserving embedding [C]. Proc of the 10th IEEE International Conference on Computer Vision, Beijing, 2005: 12081213.

引证文献4

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部