期刊文献+

多丢包不确定离散系统的鲁棒Kalman滤波 被引量:13

Robust Kalman Filtering for Uncertain Discrete-time Systems with Multiple Packet Dropouts
下载PDF
导出
摘要 研究了同时具有不确定性和多丢包情况下的离散时变系统的鲁棒滤波问题,其中的不确定性是时变的、范数有界的,且存在于系统的状态矩阵和输出矩阵中.通过把多丢包问题建模成系统模型中的随机参数,在允许的不确定性情况下,给出了估计误差方差的上界,并进一步基于矩阵范数的意义最小化该上界.结果表明,通过求解两个Riccati差分方程,可以设计鲁棒滤波器.最后,提出适合在线计算的鲁棒滤波算法,并通过仿真实例表明所提算法的有效性和实用性. This paper is concerned with the robust filtering problem for a class of discrete time-varying systems with uncertainties and multiple packet dropouts.The system under consideration is subject to time-varying norm-bounded parameter uncertainties in both the state and output matrices.Based on a model of multiple packet dropouts,the system is modeled as one with stochastic parameter.An upper bound on the variance of the state estimation error is first found under admissible parameter uncertainties.Then,a robust filter is derived by minimizing the prescribed upper bound in the sense of the matrix norm.It is shown that the desired filter can be obtained in terms of the solutions to two discrete Riccati difference equations.Eventually,a robust filtering algorithm suitable for online computation is summarized and a simulation example is presented to demonstrate the effectiveness and practicality of the proposed algorithm.
作者 郭戈 王宝凤
出处 《自动化学报》 EI CSCD 北大核心 2010年第5期767-772,共6页 Acta Automatica Sinica
基金 国家自然科学基金(60974013) 新世纪优秀人才支持计划(NCET-04-0982) 霍英东教育基金(111066)资助~~
关键词 参数不确定性 多丢包 鲁棒估计 网络控制系统 Parameter uncertaintiy multiple packet drop- outs robust estimation networked control systems (NCSs)
  • 相关文献

参考文献21

  • 1孙书利,吕楠.带有色观测噪声多传感器多重时滞系统分布式融合滤波器[J].自动化学报,2009,35(1):46-53. 被引量:2
  • 2Schenato L. Optimal estimation in networked control systems subject to random delay and packet loss. In: Proceedings of the 45th Conference on Decision and Control. San Diego, USA: IEEE, 2006. 5615-5620.
  • 3Huang M Y, Dey S. Stability of Kalman filtering with Markovian packet losses. Automatica, 2007, 43(4): 598-607.
  • 4Malyavej V, Savkin A V. The problem of optimal robust Kalman state estimation via limited capacity digital communication channels. Systems and Control Letters, 2005, 54(3): 283-292.
  • 5Dong Z, You Z. Finite-horizon robust Kalman filtering for uncertain discrete time-varying systems with uncertainconvariance white noise. IEEE Signal Processing Letters, 2006, 13(8): 493-496.
  • 6张勇,史忠科,戴冠中,周自全.离散系统的鲁棒最小方差滤波新算法及分析[J].自动化学报,2000,26(6):782-787. 被引量:4
  • 7Oliveira R C L F, Peres P L D. LMI conditions for robust stability analysis based on polynomially parameterdependent Lyapunov functions. System and Control Letter, 2006, 55(1): 52-61.
  • 8孙平,井元伟.基于采样测量值的不确定系统鲁棒H∞滤波[J].控制与决策,2006,21(6):697-700. 被引量:2
  • 9Wang Z D, Yang F W, Ho D W C, Liu X. Robust finitehorizon filtering for stochastic system with missing measurements. IEEE Signal Processing Letters, 2005, 12(6): 437-440.
  • 10Wang Z D, Ho D W C, Liu X H. Variance-constrained filtering for uncertain stochastic systems with missing measurements. IEEE Transactions on Automatic Control, 2003, 48(7): 1254-1258.

二级参考文献39

共引文献22

同被引文献83

  • 1孙海燕,侯朝桢.具有数据包丢失及多包传输的网络控制系统稳定性[J].控制与决策,2005,20(5):511-515. 被引量:24
  • 2邓自立,高媛.多通道ARMA信号信息融合Wiener滤波器[J].电子与信息学报,2005,27(9):1416-1419. 被引量:2
  • 3WANG Wu YANG Fu-Wen.H_∞ Filter Design for Discrete-time Systems with Missing Measurements[J].自动化学报,2006,32(1):107-111. 被引量:18
  • 4王武,杨富文.随机时延网络化不确定系统的鲁棒H_∞滤波[J].自动化学报,2007,33(5):557-560. 被引量:7
  • 5Rao B S, Durrant-Whyte H F. Fully decentralised algorithm for multisensor Kalman filtering. IEE Proceedings D: Control Theory and Applications, 1991.138(5): 413-420.
  • 6Reid D B. An algorithm for tracking multiple targets. IEEE Transactions on Automatic Control, 1979, 24(6): 843-854.
  • 7Fox V, Hightower J, Liao L, Schulz D, Borriello G. Bayesian filtering for location estimation. IEEE Pervasive Computing, 2003, 2(3): 24-33.
  • 8Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215-233.
  • 9Spanos D P, Olfati-Saber R, Murray R M. Dynamic consensus for mobile networks. In: Proceedings of the 16th IFAC World Congress. Pragae, Czech: IFAC, 2005. 1-6.
  • 10Spanos D P, Olfati-Saber R, Murray R M. Approximate distributed Kalman filtering in sensor networks with quantifiable performance. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks. Los Angeles, USA: IEEE, 2005. 133-139.

引证文献13

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部