期刊文献+

基于支持向量机委员会机器的个人信用评估模型

Personal Credit Scoring Models based on Committee Machine of Support Vector Machine
原文传递
导出
摘要 为了充分利用SVM在个人信用评估方面的优点、克服其不足,提出了基于支持向量机委员会机器的个人信用评估模型.将模型与基于属性效用函数估计构造新学习样本方法结合起来进行个人信用评估;经实证分析及与SVM方法对比发现,模型具有更好、更快、更多适应性的预测分类能力. In order to make full use of the strong points and to overcome the weak points of Support Vector Machine(SVM) on the credit scoring prediction problem, a personal credit scoring model is proposed based on committee machine of support vector machine(SVM- CM). Utilizing this model together with the approach of using the utility functions estimated for attributes to extract learning samples from the credit scoring prediction problem, comparing its performance with SVM ,the experiment results show the model with better, quicker classification accuracy and being more compatible with classification problem.
出处 《数学的实践与认识》 CSCD 北大核心 2010年第9期133-138,共6页 Mathematics in Practice and Theory
关键词 支持向量机 委员会机器 信用评估 support vector machine committee machine credit scoring
  • 相关文献

参考文献8

  • 1Desai V S, Crook J N, & Overstreet G A. A comparison of neural networks and linear scoring models in the credit union environment[J]. European Journal of Operational Research, 1996, 95(1): 24-37.
  • 2Henley W E. Hand D J. K-nearest neighbor classifier for assessing consumer credit risk[J]. Statistician, 1996, 45(1): 77-95.
  • 3Henley W E. Statistical Aspects of Credit Scoring[M]. Dissertation. The Open University, Milton Keynes, UK 1995.
  • 4David West. Neural network credit scoring models[J]. Computers Operation Research, 2000, 27(11- 12): 1131-1152.
  • 5Piramuthu S. Financial credit-risk evaluation with neural and neurofuzzy systems[J]. European Journal of Operational Research, 1999, 112(2): 310-321.
  • 6肖文兵,费奇.基于支持向量机的个人信用评估模型及最优参数选择研究[J].系统工程理论与实践,2006,26(10):73-79. 被引量:47
  • 7SimonHaykin著 叶世伟 史忠植译.神经网络原理[M].北京:机械工业出版社,2004..
  • 8王强,沈永平,陈英武.多属性决策的支持向量机方法[J].系统工程理论与实践,2006,26(6):54-58. 被引量:15

二级参考文献21

  • 1陈珽.决策分析[M].北京:科学出版社,1987..
  • 2Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer,1995.
  • 3www.cs.ucl.ac.uk/staff/M.Sewell/winsvm.
  • 4Henley W E. Statistical Aspects of Credit Scoring[ M]. Dissertation. The Open University, Milton Keynes, Uk 1995.
  • 5Henley W E, Hand D J. K-nearest neighbor classifier for assessing consumer credit risk[J]. Statistician, 1996, 44:77 -95.
  • 6Desai V S, Crook J N, & Overstreet G A. A comparison of neural networks and linear scoring models in the credit union environment[J]. European Journal of Operational Research, 1996, 18 : 15 - 26.
  • 7David West. Neural network credit scoring models[ J]. Computers Operation Research, 2000,27:1131 - 1152.
  • 8Jensen H L. Using neural networks for credit scoring[J]. 1992,18(1):15 - 16.
  • 9Piramuthu S. Financial credit-risk evaluation with neural and neurofuzzy systems [ J ]. European Journal of Operational Research,1999,112(2) :310 - 321.
  • 10Rashmi Malhotra, Malhotra D K. Evaluating consumer loans using neural networks [ J]. The International Journal of Management Science ,2003,31 : 83 - 96.

共引文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部