期刊文献+

氢在Mg_2Ni(100)面的吸附及扩散 被引量:6

Adsorption and Diffusion of H on Mg_2Ni(100) Surface
下载PDF
导出
摘要 运用第一性原理研究氢在清洁和掺杂Al的Mg2Ni(100)面的吸附及扩散.在清洁Mg2Ni(100)表面,氢原子可稳定地吸附于Mg-Ni桥位和Mg-Mg桥位,吸附能为1.19-1.52eV.在掺杂Al的Mg2Ni(100)表面,氢原子可稳定吸附于Al-Ni、Mg-Ni、Mg-Al桥位,吸附能为0.10-0.29eV.氢在掺杂Al的Mg2Ni(100)表面的吸附能低于其在清洁表面的吸附能,说明掺杂Al后氢原子与表面的相互作用减弱.过渡态计算结果表明,氢原子由清洁的Mg2Ni(100)面及掺杂Al的Mg2Ni(100)面扩散至次表层的势垒分别为0.59及-0.04eV,掺杂Al后氢原子的扩散势垒降低,说明氢原子更易由掺杂Al表面扩散至次表层.Al原子替代Mg2Ni(100)面的Mg原子减弱氢原子与表面的相互作用,降低氢原子由表层扩散至次表层的势垒,这可能是Mg2Ni合金掺杂Al可改善其吸氢动力学性能的主要原因之一. First-principles were used to investigate hydrogen adsorption and diffusion on clean and Al doped Mg2Ni(100) surfaces.The calculation results show that H prefers to adsorb onto Mg-Ni bridge sites and Mg-Mg bridge sites on a clean Mg2Ni(100) surface,and their adsorption energies range from 1.19 to 1.52 eV.For the Al doped Mg2Ni(100) surface,H prefers to adsorb onto the Al-Ni,Mg-Ni,Mg-Al bridge sites and the adsorption energies range from 0.10 to 0.29 eV.The results indicate that the Al doped Mg2Ni(100) surface reduces the adsorption energy for hydrogen.The transition state calculation shows that the energy barrier for H that diffuses from the clean and the Al doped Mg2Ni(100) surface to the subsurface is 0.59 and-0.04 eV,respectively.Doping the Mg2Ni(100) surface with Al weakens the interaction between H and the surface,and also reduces the barrier for hydrogen diffusion,which may be one reason for improving the kinetic properties of hydrogen adsorption for Mg2Ni alloy doped with Al.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2010年第5期1448-1456,共9页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(50561002 50861003) 广西自然科学基金重点项目(2010GXNSFD013004)资助~~
关键词 电子结构 第一性原理 Mg2Ni合金 表面吸附 扩散 Electronic structure First-principles Mg2Ni alloy Surface adsorption Diffusion
  • 相关文献

参考文献28

  • 1Reilly,J.J.; Wiswall,R.H.Inorg.Chem.,1968,7:2254.
  • 2Zaluski,L.; Zaluska,A.; Strom-Olsen,J.O.J.Alloy.Compd.,1995,217:245.
  • 3Mulasa,G.; Delogub,F.; Cocco,G.J.Alloy.Compd.,2009,473:180.
  • 4Lee,H.Y.;Goo,N.H.;Jeong,W.T.;Lee,K.S.J.Alloy.Compd.,2000,313:258.
  • 5Janot,R.; Aymard,L.; Rougier,A.; Nazri,G.A.J.Phys.Chem.Solids,2004,65:529.
  • 6Janot,R.; Darok,X.; Rougier,A.; Aymard,L.; Nazri,G.A.J.Alloy.Compd.,2005,404:293.
  • 7Xue,J.S.; Li,G.X.; Hu,Y.Q.; Jun,D.; Wang,C.Q.; Hu,G.Y.J.Alloy.Compd.,2000,307:240.
  • 8Kohno,T.; Kanda,M.J.Electrochem.Soc.,1997,144:2384.
  • 9Kohno,T.; Yamamoto,M.; Kanda,M.J.Alloy.Compd.,1999,293:643.
  • 10Kresse,G.Phys.Rev.B,2000,62:8295.

二级参考文献93

  • 1周震,言天英,高学平.储能材料的模拟与设计[J].物理化学学报,2006,22(9):1168-1174. 被引量:9
  • 2宋红州,张平,赵宪庚.Be(0001)薄膜中的量子尺寸效应与吸附氢的第一性原理计算[J].物理学报,2007,56(1):465-473. 被引量:4
  • 3Diebold,U.Surf.Sci.Rep.,2003,48:53
  • 4Norton,D.P.Mater.Sci.Eng.R-Rep.,2004,43:139
  • 5Li,D.; Ohashi,N.; Hishita,S.; Kolodiazhnyi,T.; Haneda,H.J.Solid State Chem.,2005,178:3293
  • 6Todorova,N.,Giannakopoulou,T.; Romanos,G.; Vaimakis,T.;Yu,J.G.; Trapalis,C.Int.J.Photoenergy,2008:534038
  • 7Wu,G.S.; Chen,A.C.J.Photochem.Photobiol.A -Chem.,2008,195:47
  • 8Xu,J.J.; Ao,Y.H.; Fu,D.G.; Yuan,C.W.Appl.Surf.Sci.,2008,254:3033
  • 9Zhou,J.K.; Lv,L.; Yu,J.Q.; Li,H.L.; Guo,P.Z.; Sun,H.; Zhao,X.S.J.Phys.Chem.C,2008,112:5316
  • 10Li,D.; Haneda,H.; Hishita,S.; Ohashi,N.Chem.Mater.,2005,17:2596

共引文献32

同被引文献80

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部