摘要
考察了二阶常微分方程u″(t)+f(t,u(t))+h(t)=0,a.e.t∈[0,1]在Sturm-Liouville边值条件下的正解,其中f(t,u)是非负弱Caratheodory函数并且允许h(t)■0.利用锥拉伸与锥压缩型的Krasnoselskii不动点定理,建立了有限或无穷多个正解的存在性.、
The positive solutions are considered for the second-order ordinary differential equation u"(t)+f(t,u(t))+h(t)=0,a.e.t∈[0,1]with Sturm-Liouville boundary condition.Here,f(t,u) is a nonnegative weak Caratheodoly function,and h(t)■ 0 is allowed.By applying Krasnosel'skii fixed point theorem of cone expansion-compression type,the existence of finitely or infinitely many positive solutions is established.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2010年第3期429-442,共14页
Acta Mathematica Sinica:Chinese Series
关键词
奇异边值问题
正解
存在性与多解性
singular boundary value problem
positive solution
existence and multiplicity