期刊文献+

集值Vitali-Hahn-Saks-Nikodym定理 被引量:1

Set-valued Vitali-Hahn-Saks-Nikodym Theorem
原文传递
导出
摘要 本文通过强可加集值测度的一个等价叙述引入集值测度一致强可加的概念,并建立了集值测度的Vitali-Hahn-Saks-Nikodym定理. In this paper,the definition of uniform strongly additive for a collection of strongly additive set-valued measures is introduced by on equivalent statement about the strongly additive set-valued measure.Then the Vitali-Hahn-Saks-Nikodym theorem about set-valued measure is established.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2010年第3期525-530,共6页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10871106)
关键词 向量测度 集值测度 Vitali-Hahn-Saks-Nikodym定理 vector valued measure set-valued measure Vitali-Hahn-Saks-Nikodym theorem
  • 相关文献

参考文献13

  • 1Artstein Z., Set valued Measures, Trans. Amer. Math. Soc., 1972, 165: 103-125.
  • 2Hiai F., Radon-Nikodym theorems for set valued measures, J. Multivariate, 1978, Anal.8: 96-118.
  • 3Papageorgiou N. S., On the theory of Banach space valued multifunction, 1. Integration and expectation; 2. Set valued martingales and Set valued measures, J. Multivariate Anal., 1985, 17: 185-227.
  • 4Papageorgiou N. S., Representation of set valued operators, Trans. Amer. Math. Soc., 1985, 292: 557-572.
  • 5Xue X. P., Cheng L. X., Li G. C., Yao X. B., Set valued measures and integral representation, Comment Math. Univ. Carolinae, 1996, 37:269 284.
  • 6Li I., Wu C. X., Set Value Analysis, Peking: Science Press, 2003 (in Chinese).
  • 7Papageorgiou N. S., Contributions to the theory of set valued functions and set valued measures, Trans. Amer. Math. Soc., 1987, 304: 245-265.
  • 8Wu J. R., Xue X. P., Wu C. X., Radom-Nikodym theorem and vitali-hahn-saks theorem on fuzzy number measures in Banach spaces, J. Fuzzy set and Systems, 2001, 117: 339-346.
  • 9Wu W. Z., Zhang W. X., Wang R. M., Set valued Bartle integral, J. Math. Anal. Appl., 2001, 255: 1-20.
  • 10Diestl J., Uhl J., Vector Measures, Math. Surveys, Vol.15, Amer. Math. Soc., Providence, 1977.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部