期刊文献+

磁悬浮控制力矩陀螺框架结构的拓扑优化设计 被引量:10

Topology optimization design of frame structure for magnetic suspension control moment gyroscope
下载PDF
导出
摘要 建立磁悬浮控制力矩陀螺框架结构的有限元分析模型,对控制力矩陀螺框架结构进行模态分析,阐述了框架结构优化设计的基本思路.结合双向渐进优化算法拓扑优化理论,基于通用有限元分析软件ANSYS的参数化设计语言和二次开发语言,开发了连续体拓扑优化模块.以框架结构的最低阶频率值为约束条件,以框架结构质量最小为优化目标,引入名义应力的概念,建立框架结构固有振型与名义应力的关系,实现了磁悬浮控制力矩陀螺框架结构的动态拓扑优化,扩展了双向渐进优化算法的应用范围.优化后的结构构型具有更为合理的质量和刚度布局,频率提高11.49%,质量减少5.65%. The finite element model of frame structure for magnetic suspension control moment gyroscope(MS-CMG) was established and a modal analysis was implemented.On the view of the numerical results the optimization opinions of the frame structure were presented.The topology optimization module for continuum structure was developed and plugged in ANSYS via its APDL and UIDL combined with the bi-directional evolutionary structural optimization method(BESO).Thus the dynamic topological optimization of frame structure was realized with the fundamental frequency as constraint condition and the minimum weight as the target function.In this procedure,a nominal stress was presented and a relationship between the nominal stress and the corresponding mode shape of frame structure was established,by which the BESO was extended to apply in field of dynamic optimization.At last,a frame structure configuration was provided with optimum layout of stiffness and mass was given.Comparing with the initial configuration,the optimum frame structure satisfied the design demands and the fundamental frequency increased by 11.49%,whereas the mass decreased by 5.65%.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2010年第4期455-458,499,共5页 Journal of Beijing University of Aeronautics and Astronautics
基金 民用航天预研资助项目
关键词 控制力矩陀螺 拓扑优化 双方向进化优化 control moment gyroscopes topology optimization bi-directional ESO(evolutionary structural optimization)
  • 相关文献

参考文献5

二级参考文献32

  • 1刘义,许志沛.机械设计中基于有限元方法的模态分析[J].机械,2003,30(S1):96-98. 被引量:22
  • 2陈立志.磁悬浮轴承在高速旋转机械上的应用及一种混合径向磁悬浮轴承的设计[J].光学精密工程,1994,2(4):101-108. 被引量:4
  • 3魏彤,房建成.磁悬浮控制力矩陀螺的动框架效应及其角速率前馈控制方法研究[J].宇航学报,2005,26(1):19-23. 被引量:33
  • 4[7]Yoshitaka Hisanaga,Osami Matsushita,Shinobu Saitoh.Aanalysis and evaluation of unbalance resonance vibration and bearing reaction force for active magnetic bearing equipped flexible rotor[C]//Fifth International Symposium on Magnetic Bearings,Kanazawa:Japan,1996,71-75.
  • 5[8]Markus Ahrens,Ladislav Kuera,Rene Larsonneur.Field experiences with a highly unbalanced magneticallly suspended flywheel rotor[C]//Fifth International Symposium on Magnetic Bearings,Japan:1996,125-130.
  • 6[2]The Proceedings of the Committee to Investigate the SKYLAB CMG No.2 Orbital Anomalies.Guidance and Control Division Astrionics Laboratory[C].NASA,N79-76857,Jan.18,1974:1-9.
  • 7[3]Richard R,Burt and Richard W,LOFFi.Failure analysis of international space station control moment gyro[C]//The Proceeding 10th European Space Mechanisms and Tribology Symposium,San Sebastian,Spain,24-26.September,2003:13-25.
  • 8[4]Yu P,Semyonov.The beginning of the MIR station active operation.the 38th congress of the international astronautical[C].Federation October 10-17,1987/Brighon,United kingdom:21-24.
  • 9[5]Anand D K,Kirk J A,Frommer D A.Dedign consideration for a magnetically suspended flywheel energy storage system[C]//Proceedings of 20th Intersociety Energy Conversion Engineering Conference,Miami Beach,FL,August 18-23,1985.
  • 10[6]Hagiwara S,et al.Rotational tests of magnetically suspended flywheel for spacecraft (2nd report)[R].JSME No.810-4(1981).PP.97-69 (in Japanese).

共引文献66

同被引文献83

引证文献10

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部