期刊文献+

Superlattice Patterns in Coupled Turing Systems 被引量:1

Superlattice Patterns in Coupled Turing Systems
下载PDF
导出
摘要 In this paper, superlattice patterns have been investigated by using a two linearly coupled Brusselator model. It is found that superlattice patterns can only be induced in the sub-system with the short wavelength. Three different coupling methods have been used in order to investigate the mode interaction between the two Turing modes. It is proved in the simulations that interaction between activators in the two sub-systems leads to spontaneous formation of black eye pattern and/or white eye patterns while interaction between inhibitors leads to spontaneous formation of super-hexagonal pattern. It is also demonstrated that the same symmetries of the two modes and suitable wavelength ratio of the two modes should also be satisfied to form superlattice patterns.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第5期971-976,共6页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos. 10975043, 10947166 and 10775037 the Foundation of Bureau of Education, Hebei Province, China under Grant No. 2009108 the Natural Science Foundation of Hebei Province, China under Grant No. A2008000564)
关键词 superlattice pattern turing instability mode interaction 线性耦合 超晶格 子系统 Brusselator模型 图灵 相互作用模式 耦合方法 六角形
  • 相关文献

参考文献26

  • 1D.A. Garanin and E.M. Chudnovsky, Phys. Rev. Lett. 102 (2009) 097206.
  • 2R. Dominguez, K. Barros, and W. Klein, Phys. Rev. E 79 (2009) 041121.
  • 3T. Epstein and J. Fineberg, Phys. Rev. Lett. 100 (2008) 134101.
  • 4M. Aguareles, S.J. Chapman, and T. Witelski, Phys. Rev. Lett. 101 (2008) 224101.
  • 5M.C. Cross and P. Hohenberg, Rev. Mod. Phys. 65 (1993) 851.
  • 6A.M. Turing, Phil. Trans. R. Soc. London Ser. B 237 (1952) 37.
  • 7Q. Ouyang and H.L. Swinney, Nature (London) 352 (1991) 610.
  • 8A.M. Zhabotinsky and M. Dolnik, J. Chem. Phys. 103 (1995) 10306.
  • 9I. Berenstein, L. Yang, M. Dolnik, A.M. Zhabotinsky, and I.R. Epstein, Phys. Rev. Lett. 91 (2003) 058302.
  • 10R.T. Liu, S.S. Liaw, and P.K. Maini, Phys. Rev. E 74 (2006) 011914.

同被引文献10

  • 1EPSTEIN T, FINEBERG J. Necessary conditions for mode interactions in parametrically excited waves [J]. Phys Rev Lett,2008, 100: 134101.
  • 2BARRIO R A, BAKER R E, VAUGHAN B, et al. Modeling the skin pattern of fishes[J]. Phys Rev E, 2009, 79: 031908.
  • 3BACHIR M, METENS S, BORCKMANS P, et al. Formation of rhombic and superlattice patterns in bistable systems [J]. Europhys Lett,2001, 54: 612-618.
  • 4YANG L, DOLNIK M, ZHABOTINSKY A M, et al. Spatial resonances and superposition patterns in a reaction-diffusion model with interacting turing modes [J]. Phys Rev Lett,2002, 88(20): 208303.
  • 5BERENSTEIN I, YANG L, DOLNIK M, et al. Superlattice turing structures in a photosensitive reaction-diffusion system [J]. Phys Rev Lett,2003, 91(5): 058302.
  • 6PAGE K M, MAINI P K, MONK N A. Complex pattern formation in reaction-diffusion systems with spatially varying parameters [J]. Phys D,2005, 202:95-115.
  • 7YANG L, DOLNIK M, ZHABOTINSKY A M, et al. Turing patterns beyond hexagons and stripes[J]. Chaos, 2006, 16: 037114.
  • 8YANG L, EPSTEIN I R. Symmetric, asymmetric, and antiphase turing patterns in a model system with two identical coupled layers [J]. Phys Rev E,2004, 69: 026211.
  • 9YANG L, EPSTEIN I R. Oscillatory turing patterns in reaction-diffusion systems with two coupled layers [J]. Phys Rev Lett,2003, 90(17): 178303.
  • 10董丽芳,谢伟霞,赵海涛,范伟丽,贺亚峰,肖红.氩气/空气介质阻挡放电自组织超六边形斑图实验研究[J].物理学报,2009,58(7):4806-4811. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部