期刊文献+

The Average Value Inequality in Sequential Effect Algebras 被引量:2

The Average Value Inequality in Sequential Effect Algebras
原文传递
导出
摘要 A sequential effect algebra (E, 0, 1, ,o) is an effect algebra on which a sequential product o with certain physics properties is defined; in particular, sequential effect algebra is an important model for studying quantum measurement theory. In 2005, Gudder asked the following problem: If a, b E (E, 0, 1, , o) and a⊥b and a o b⊥a o b, is it the case that 2(a o b) ≤ a2 b2 ? In this paper, we construct an example to answer the problem negatively. A sequential effect algebra (E, 0, 1, ,o) is an effect algebra on which a sequential product o with certain physics properties is defined; in particular, sequential effect algebra is an important model for studying quantum measurement theory. In 2005, Gudder asked the following problem: If a, b E (E, 0, 1, , o) and a⊥b and a o b⊥a o b, is it the case that 2(a o b) ≤ a2 b2 ? In this paper, we construct an example to answer the problem negatively.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第5期831-836,共6页 数学学报(英文版)
基金 Supported by Natural Science Fund of China (Grant Nos. 10771191 and 10471124)
关键词 effect algebras sequential effect algebras average value inequality effect algebras, sequential effect algebras, average value inequality
  • 相关文献

参考文献8

  • 1Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics. Found Phys., 24, 1331-1352 (1994).
  • 2Gudder, S.: Sharply dominating effect algebras. Tatra Mr. Math. Publ., 15, 23-30 (1998).
  • 3Gudder, S., Nagy, G.: Sequential quantum measurements. J. Math. Phys., 42, 5212-5222 (2001).
  • 4Gudder, S., Greechie, R.: Sequential products on effect algebras. Rep. Math. Phys., 49, 87-111 (2002).
  • 5Gudder, S.: Open problems for sequential effect algebras. Inter. J. Theory. Phys., 44, 2219-2230 (2005).
  • 6Liu, W. H., Wu, J. D.: The uniqueness problem of sequence product on operator effect algebra (H). d. Phys. A: Math. Theor., 42, 185206-185215 (2009).
  • 7Shen, J., Wu, J. D.: Not each sequential effect algebra is sharply dominating. Physics Letter A, 373, 1708 1712 (2009).
  • 8Shen, J., Wu, J. D.: Remarks on the sequential effect algebras. Report Math. Physi., 63, 441-446 (2009).

同被引文献17

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部