期刊文献+

Periodic Solutions in Unbounded Domains for the Boussinesq System 被引量:1

Periodic Solutions in Unbounded Domains for the Boussinesq System
原文传递
导出
摘要 Assuming that the external forces of the system are small enough, the reference temperature being a periodic function, we study the existence, the uniqueness and the regularity of time-periodic solutions for the Boussinesq equations in several classes of unbounded domains of Rn. Our analysis is based on the framework of weak-Lp spaces. Assuming that the external forces of the system are small enough, the reference temperature being a periodic function, we study the existence, the uniqueness and the regularity of time-periodic solutions for the Boussinesq equations in several classes of unbounded domains of Rn. Our analysis is based on the framework of weak-Lp spaces.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第5期837-862,共26页 数学学报(英文版)
基金 supported by M.E.C. (Spain), Project MTM 2006-07932 supported by Junta de Andalucía, Project P06- FQM- 02373 supported by Fondecyt-Chile (Grant No. 1080628)
关键词 Boussinesq equations strong periodic solutions unbounded domains Boussinesq equations, strong periodic solutions, unbounded domains
  • 相关文献

参考文献19

  • 1Chandrasekhar, S.: Hidrodinamic and Hydromagnetic Stability, New York, 1981.
  • 2Cannon, J. R., DiBenedetto, E.: The initial value problem for the Boussinesq equations with data in Lp, in Approximation Methods for Navier-Stokes Problems, Edited by Rautmann, R., Lect. Notes in Math., Springer-Verlag, Berlin, 771, 1980.
  • 3Ferreira, L. C. F., Villamizar-Roa, E. J.: Well-posedness and asymptotic behaviour for the convection problem in R^n. Nonlinearity, 19, 2169-2191 (2006).
  • 4Fife, P. C., Joseph, D. D.: Existence of convective solutions of the generalized Bdrnard problem which are analytic in their norm. Arch. Rational Mech. Anal., 33, 116-138 (1969).
  • 5Lucaszewicz, G., Ortega-Torres, E. E., Rojas-Medar, M. A.: Strong periodic solutions for a class of abstract evolution equations. Nonlinear Analysis, 54, 1045-1056 (2003).
  • 6Ferreira, L. C. F., Villamizar-Roa, E. J.: Existence of solutions to the convection problem in a pseudomeasure-type space. Proc. R. Soc. Lond. Set. A Math. Phys. Eng. Sci., 464(2096), 1983-1999 (2008).
  • 7Kozono, H., Nakao, M.: Periodic solutions of the Navier-Stokes equations in unbounded domains. J. Tohoku Math., 48, 33-50 (1996).
  • 8Maremonti, P.: Existence and stability of time periodic solutions of the Navier-Stokes equations in whole space. Nonlinearity, 4, 503-529 (1991).
  • 9Maremonti, P.: Some theorems of existence for solutions of the Navier-Stokes equations with slip boundary conditions in half-space. Rich. Mat., 40, 81-135 (1991).
  • 10Taniuchi, Y.: On stability of periodic solutions of the Navier-Stokes equations in unbounded domains. Hokkaido Math. J., 28, 147-173 (1999).

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部