期刊文献+

OPTIMAL CONTROL OF MULTISOLUTION ORDINARY DIFFERENTIAL EQUATIONS IN THE ABSENCE OF CONVEXITY

OPTIMAL CONTROL OF MULTISOLUTION ORDINARY DIFFERENTIAL EQUATIONS IN THE ABSENCE OF CONVEXITY
原文传递
导出
摘要 In this paper,the authors study an optimal control problem governed by a class of multistateordinary differential equations in the absence of convexity.To overcome the difficulty that thecorresponding approximate optimal control problem may have no solution,relaxed controls are introduced.With the help of relaxation theory,Pontryagin's maximum principle for the optimal pairs ofthe original control problem is obtained.In the end of this paper,the authors discuss the applicationof the maximum principle by an example.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2010年第2期321-333,共13页 系统科学与复杂性学报(英文版)
基金 supported by the Doctoral Special Foundation of ZHJNC-ZL0904 the National Natural Science Foundation of China under Grants Nos.10871039,10601010,and 10826077 Guangdong Provincial Natural Science Foundation under Grant No.07301595
关键词 Multisolution ODES optimal control Pontryagin's maximum principle relaxed controls. 最优控制问题 常微分方程 多尺度 作者 高原 凸性
  • 相关文献

参考文献13

  • 1V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, Academic Press, New York, 1993.
  • 2X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhauser Boston, Cambridge, MA, 1995.
  • 3Q. H. Chen, Indirect obstacle control problem for semilinear elliptic variational inequalities, SIAM J. Control Optim., 1999, 38(1): 138-158.
  • 4H. O. Fattorini and H. Frankowska, Necessary conditions for infinite dimensional control problems, Math. Control Signals Systems, 1991, 4: 225-257.
  • 5J. M. Yong, Pontryagin maximum principle for semilinear second order elliptic partial differential equations and variational inequalities with state constraints, Differential Integral Equations, 1992, 5: 1307-1334.
  • 6J. F. Bonnans and E. Casas, Optimal control of semilinear multistate systems with state constraints, SIAM J. Control Optim., 1989, 27(2): 446-455.
  • 7H. Gao, Optimality condition for a class of semi-linear elliptic equations, Acta Math. Sinica, 2001, 44(2): 319-332.
  • 8J. L. Lions, Controle de Systemes Distribuds Singuliers, Dunod, Paris, 1983.
  • 9G. Wang and L. Wang, State-constrained optimal control governed by non-well-posed parabolic differential equations, SIAM J. Control Optim., 2002, 40(5): 1517-1539.
  • 10H. Lou, Maximum principle of optimal control for degenerate quasi-linear elliptic equations, SIAM J. Control Optim., 2003, 42(1): 1-23.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部