期刊文献+

REMOVABLE EARS OF 1-EXTENDABLE GRAPHS

REMOVABLE EARS OF 1-EXTENDABLE GRAPHS
原文传递
导出
摘要 Carvalho, Lucchesi and Murty proved that any 1-extendable graph G different from K2 and C2n has at least A(G) edge-disjoint removable ears, and any brick G distinct from K4 and C6 has at least A(G) - 2 removable edges, where A(G) denotes the maximum degree of G. In this paper, we improve the lower bounds for numbers of removable ears and removable edges of 1-extendable graphs. It is proved that any 1-extendable graph G different from K2 and C2n has at least x′(G) edge-disjoint removable ears, and any brick G distinct from Ka and Ce has at least x′(G) - 2 removable edges, where x′(G) denotes the edge-chromatic number of G. Key words 1-extendable graphs, removable ear, removable edge.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2010年第2期372-378,共7页 系统科学与复杂性学报(英文版)
基金 supported by the National Science Foundation of China under Grant No.10831001 the Fujian Provincial Department of Education under Grant No.JA08223
关键词 1-extendable graphs removable ear removable edge. 可扩图 耳朵 可移动 不相交 最大度 关键词 边色数 证明
  • 相关文献

参考文献9

  • 1M. H. de Carvalho, C. L. Lucchesi, and U. S. R. Murty, Ear decompositions of matching covered graphs, Combinatorica, 1999, 19(2): 151-174.
  • 2L. Lovasz and M. D. Plummer, Matching Theory, North-Holland, New York, 1986.
  • 3M. D. Plummer, On n-extendable graphs, Discrete Math., 1980, 31(2): 201-210.
  • 4M. D. Plummer, Matching extension in bipartite graphs, Proceedings of the 17th Southeastern Conference on Combinatorics, Graph Theory and Computing, Congress Numer 54, Utilitas Math. Winnipeg, 1986, 245-258.
  • 5J. Edmonds, L. Lovasz, and W. R. Pulleyblank, Brick decomposition and the matching rand of graphs, Combinatorica, 1982, 2(3): 247-274.
  • 6L. Lovasz, Matching structure and the matching lattice, J. Combin. Theory Ser. B, 1987, 43(2): 187-222.
  • 7M. H. de Carvalho, Decomposicao Otima em Orelhas Para Gratbs Matching Covered, Ph.D. thesis submitted to the University of Campinas, Brasil (in Portugrese), 1997.
  • 8L. Lovasz, Ear decompositions of matching covered graphs, Combinatorica, 1983, 3(1): 105-117.
  • 9M. D. Plummer, Matching extension and connectivity in graphs, Congr. Numer., 1988, 63(1) 147-160.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部