A NEW SIMPLE 2-D PIECEWISE LINEAR MAP
A NEW SIMPLE 2-D PIECEWISE LINEAR MAP
摘要
A new simple piecewise linear map of the plane is presented and analyzed, then a detailed study of its dynamical behaviour is described, along with some other dynamical phenomena, especially fixed points and their stability, observation of a new chaotic attractors obtained via border collision bifurcation. An important resuk about coexisting chaotic attractors is also numerically studied and discussed.
参考文献31
-
1R. L. Devaney, A piecewise linear model for the zones of instability of an area-preserving map, Physica 10D, 1984, 387-393.
-
2R. Lozi, Un attracteur etrange du type attracteur de Henon, Journal de Physique, Colloque C5, Supplement au n^0 8, 1978, 39: 9-10.
-
3Y. Cao and Z. Liu, Strange attractors in the orientation-preserving Lozi map, Chaos Solitons Fractals, 1998, 9(11): 1857-1863.
-
4D. Aharonov, R. L. Devaney, U. Elias, The dynamics of a piecewise linear map and its smooth approximation, International Journal of Bifurcation and Chaos, 1997, 7(2): 351-372.
-
5P. Ashwin and X. C. Fu, On the dynamics of some nonhyperbolic area-preserving piecewise linear maps, in Mathematics in Signal Processing V, Oxford Univ Press IMA Conference Series, 2002.
-
6J. Scheizer and M. Hasler. Multiple access communication using chaotic signals, in Proc. IEEE ISCAS'96, Atlanta, USA, 1996, 3, 108.
-
7A. Abel, A. Bauer, K. Kerber, and W. Schwarz, Chaotic codes for CDMA application, in Proc. ECCTD'97, 1997, 1: 306.
-
8S. Banerjee and G. C. Verghese, Nonlinear Phenomena in Power Electronics: Attractors, Bifurcations, Chaos, and Nonlinear Control, IEEE Press, New York, 2001.
-
9S. Banerjee, S. Parui, and A. Gupta, Dynamical effects of missed switching in current-mode controlled dc-dc converters, IEEE Trans. Circuits & Systems Ⅱ, 2004, 51: 649-654.
-
10R. Rajaraman, I. Dobson, and S. Jalali, Nonlinear dynamics and switching time bifurcations of a thyristor controlled reactor circuit, IEEE Trans. Circuits & Systems Ⅰ, 1996, 43: 1001-1006.
-
1屈世显,卢永智,张林,何大韧.Discontinuous bifurcation and coexistence of attractors in a piecewise linear map with a gap[J].Chinese Physics B,2008,17(12):4418-4423. 被引量:5
-
2韦丽梅,李群宏,卢裕木.一类经济模型的分岔分析[J].钦州学院学报,2014,29(2):22-25.
-
3邓洪敏,何松柏,虞厥邦.基于一种特定混沌映射的跳频系统[J].系统工程与电子技术,2002,24(10):45-46. 被引量:4
-
4张艳红,邱红军,罗建林.一类非光滑映射的混沌研究[J].高师理科学刊,2010,30(4):18-20.
-
5王参军,杨科利,屈世显.Noise destroys the coexistence of periodic orbits of a piecewise linear map[J].Chinese Physics B,2013,22(3):205-208. 被引量:1
-
6磁性材料[J].电子科技文摘,1999(11):12-12.
-
7宦颂梅,杨晓松.关于n维分段线性映射非光滑周期加倍分叉现象的一点注记(英文)[J].应用数学,2011,24(4):671-675.
-
8Denghui LI,Jianhua XIE.Symbolic dynamics of Belykh-type maps[J].Applied Mathematics and Mechanics(English Edition),2016,37(5):671-682.
-
9李国刚,钟超林,蔺小梅.OHNN新的分组Hash算法[J].华侨大学学报(自然科学版),2015,36(4):393-398. 被引量:1
-
10李明,戴栋,马西奎.不连续电流型Buck-Boost变换器二参数分岔的数值研究[J].西安交通大学学报,2004,38(4):348-351. 被引量:4