期刊文献+

平行照明多目视觉检测技术 被引量:6

Multi蛳vision detection method based on parallel lighting
下载PDF
导出
摘要 多目视觉检测技术是通过多个不同位置的视觉传感器,从不同角度获取同一目标的图像,并对所得图像进行目标匹配、差分相减等,最终清晰提取出目标信息的一种视觉测量技术。相比单目视觉方法,利用多个传感器能搜集更多的目标物信息,且在检测系统中又融入了平行光照明方式下,对称式多角度的图像采集方法,可以使不同显现力的被测物平面信息通过极高的对比度显现出来,再结合多幅图像匹配、差分规则,最终可以得到效果更佳的缺陷或轮廓信息。描述了遵照该检测方法设计的实验装置,并通过成组实验证明了其可行性。基于平行光照明的多目视觉检测方法提高了系统的抗干扰能力,使系统从根本上提高了图像处理结果的精度,相比以往软件除噪、滤波等方法更加便捷、快速、稳定,适用范围也更广。提出了利用大功率LED芯片构造平行光源的思路,该平行光源设计准直度更好,非平行杂光干扰更小。 Multi-vision detection was an image processing technology which captured images of the same object from different angles with several CCD sensors,and obtained the information of the object after image matching,segmentation and subtraction.In contrast with the method of monocular vision,the multi-vision sensors can obtained more information of the object,moreover,the detecting system used the method of capturing images from multi-angle with symmetry in the condition of parallel lighting.Finally,the defect and profile information of the object formed perfectly with the help of the method of image matching and the rules of the image subtraction.According to the technology of the image detection above,an experimental device was introduced in the paper.The groups of experiments prove that the method is quite feasible.The method of multi-vision detection based on parallel lighting greatly improves the anti-interference ability of the system,and fundamentally raises the precision of the image processing.This method is much more convenient,quick,stable and applicable to different situations compared with the traditional method of eliminating noise and filtering.
作者 赵阳 曲兴华
出处 《红外与激光工程》 EI CSCD 北大核心 2010年第2期339-345,共7页 Infrared and Laser Engineering
基金 国家自然科学基金资助项目(50875185)
关键词 多目视觉检测 平行光 差分 Multi-vision detection Parallel lighting Subtraction
  • 相关文献

参考文献10

  • 1C HANG C C,HWANG S M,B UEHRE R D J.A shape recognition scheme based on relative distances of feature points from the centroid[J].Pattern Recogn,1991,24:1053-1063.
  • 2DUBUISSON M P,LAKSHMANAN S.JAIN A K Vehicle segmentation and classification using deformable templates[J].IEEE Trans Pattern Anal Mach Intell,1996,18:293-308.
  • 3葛文谦,赵慧洁.高曲率微小零件表面缺陷及外形尺寸测量系统研究[J].红外与激光工程,2008,37(S1):274-278. 被引量:9
  • 4BEYMER D,POGGIO T.Image representations for visual learning[J].Science,1996,272:1905-1909.
  • 5NASCIMENTO M Z,FRKRE A F.Subtraction of images for automatic determination of center of the radiation field[C]//Proceedings of the 25th AnnuaI International Conference of the IEEE EMBS Caneun.2003:17-21.
  • 6张宏群,张雪,肖旺新.小波变换的自适应阈值图像边缘检测方法[J].红外与激光工程,2003,32(1):32-36. 被引量:31
  • 7ANSARI N,DELP E J.Partial shape recognition.a landmark based approach[J].IEEE Tram Pattern Anal Mach Intell,1990,12:470-483.
  • 8LEEKM.Model-based detection,segmentation,and classification for image analysis using on-line shape learning[J].Machine Vision and Applications,2003,13:222-233.
  • 9SU C L.Chinese-seal-print recognition by color image dilating.extraction,and gray scale image geometry comparison[J].Journal of Intelligent and Robotic Systems,2005,44:349-359.
  • 10宋丽梅,周兴林,徐可欣,曲兴华,叶声华.基于单幅测量图像的三维缺陷检测技术[J].光学学报,2005,25(9):1195-1200. 被引量:19

二级参考文献12

共引文献56

同被引文献55

引证文献6

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部