期刊文献+

Desorption behaviour and microstructure change of nanostructured hydrided AZ31 Mg alloy powders 被引量:2

Desorption behaviour and microstructure change of nanostructured hydrided AZ31 Mg alloy powders
下载PDF
导出
摘要 In order to optimize the dehydriding process for producing nanocrystalline Mg alloy powders by hydriding-dehydriding treatment,nano-structured as-hydrided Mg-3%Al-1%Zn(AZ31 Mg)(mass fraction)alloy powders were thermally dehydrided at various temperatures from 275 to 375℃.The kinetics of hydrogen desorption was examined by hydrogen discharge measurement during dehydriding.The microstructure of the as-hydrided and the subsequently fully dehydrided alloy powders was investigated by X-ray diffraction analysis(XRD)and transmission electron microscopy(TEM),respectively.Both the desorption kinetics and the grain size of the alloy after complete dehydriding were found to be strongly dependent on the processing temperature.The higher the temperature,the faster the desorption,and the more significant the grain growth.When the desorption temperature was raised from 300 to 375℃,the time to achieve complete dehydriding was shortened from 190 to 20 min,and the average grain size increased correspondingly from 20 to 58 nm. In order to optimize the dehydriding process for producing nanocrystalline Mg alloy powders by hydriding-dehydriding treatment,nano-structured as-hydrided Mg-3%Al-1%Zn(AZ31 Mg)(mass fraction)alloy powders were thermally dehydrided at various temperatures from 275 to 375℃.The kinetics of hydrogen desorption was examined by hydrogen discharge measurement during dehydriding.The microstructure of the as-hydrided and the subsequently fully dehydrided alloy powders was investigated by X-ray diffraction analysis(XRD)and transmission electron microscopy(TEM),respectively.Both the desorption kinetics and the grain size of the alloy after complete dehydriding were found to be strongly dependent on the processing temperature.The higher the temperature,the faster the desorption,and the more significant the grain growth.When the desorption temperature was raised from 300 to 375℃,the time to achieve complete dehydriding was shortened from 190 to 20 min,and the average grain size increased correspondingly from 20 to 58 nm.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第4期597-601,共5页 中国有色金属学报(英文版)
基金 Project(50574034)supported by the National Natural Science Foundation of China Project(20060213016)supported by Doctoral Education Fund of Ministry of Education of China
关键词 Mg hydride dehydriding Mg alloy nanocrystalline material Mg hydride dehydriding Mg alloy nanocrystalline material
  • 相关文献

参考文献16

  • 1王珩,胡连喜,陈先觉.AZ31镁合金粉末氢气氛下机械球磨的组织演变[J].材料工程,2008,36(10):183-186. 被引量:1
  • 2INOUE A,,MATSUSHITA M,KAWAMURA Y,AMIYA K,HAYASHI K,KOIKE J.Novel hexagonal structure of ultra-high strength magnesium-based alloys. Materials Transactions . 2002
  • 3MCGUINESS P J,ZHANG X J,KNOCH K G,YIN X J,WYBORN M J,HARRIS I R.HDDR hot-pressed magnets:Magnetic properties and microstructure. Journal of Magnetism and Magnetic Materials . 1992
  • 4YONKEU A L,SWAINSON I P,DUFOUR J,HUOT J.Kinetic investigation of the catalytic effect of a body centered cubic-alloy TiV1.1Mn0.9(BCC)on hydriding/dehydriding properties of magnesium. Journal of Alloys and Compounds . 2008
  • 5Chang Tien-Chan,Wang Jian-Yi,O Chia-Ming,et al.Grain refining of magnesium alloy AZ31 by rolling. Journal of Materials . 2003
  • 6CHEN Zhen-hua,YAN Hong-ge,CHEN Ji-hua,QUAN Ya-jie,WANG Hui-min,CHEN Ding.Magnesium alloy. . 2004
  • 7Kai M,,Horita Z,Langdon T G.Developing grain refinementand superplasticity in a magnesium alloy processed by high-pressure torsion. Journal of Materials Science . 2008
  • 8YOON D J,LIM S J,JEONG H G,KIM E Z,CHOC D.Forming characteristics of AZ31B magnesium alloy in bidirectional extrusion process. J Mater Process Tech . 2008
  • 9Furuia M,Kitamuraa H,Anadaa H, etc.Influence of preliminary extrusion conditions on the superplastic properties of a magnesium alloy processed by ECAR. Acta Materialia . 2007
  • 10TAN Cheng-wen,XU Shan-na,WANG Lu,CHEN Zhi-yong,WANG Fu-chi,CAI Hong-nian.Effect of temperature on mechanical behavior of AZ31 magnesium alloy. Trans. Nonferrous Met. Soc. China . 2007

二级参考文献14

  • 1伊藤邦夫 神野公行.功能性金属材料[M].北京:科学出版社,1990..
  • 2ZHANG Q Q, CAO Z Y, LIU Y B,et al. Effect of asymmetrical deformation on the microstructure evolution of semisolid AZ91D alloy[J]. Materials Science and Engineering A, 2008,488:260-- 265.
  • 3MITSUAKI FURUI, HIROKI KITAMURA, HIROSHI ANADA, et al. Influence of preliminary extrusion conditions on the superplastic properties of a magnesium alloy processed by ECAP [J]. Acta Materialia, 2007,55 : 1083-- 1091.
  • 4WANG Q D, CHEN Y J, LIN J B, et al. Microstructure and properties of magnesium alloy processed by a new severe plastic deformation method [ J ]. Materials Letters, 2007, 61 : 4599 -- 4602.
  • 5SHI Gang, HU Lian-xi, WANG Er-de. Preparation,microstructure, and magnetic properties of a nanocrystalline Nd12 Fe82 B6 al loy by HDDR combined with mechanical milling[J]. Journal of Magnetism and Magnetic Materials, 2006,301 :319--324.
  • 6HU Lian-xi, WU Yang, YUAN Yuan, et al. Mierostructure nanoerystallization of a Mg-3 wt. % Al-1 wt. % Zn alloy by mechanically assisted hydriding-dehydriding[J]. Materials Letters, 2008,62:2984--2987.
  • 7TAKAMURA H, MIYASHITA T, KAMEGAWA A, et al. Grain size refinement in Mg-Al-based alloy by hydrogen treatment[J]. Journal of Alloys and Compounds, 2003,356--357 804--808.
  • 8KANG S H, LEE Y S, LEE J H. Effect of grain refinement of magnesium alloy AZ31 by severe plastic deformation on material characteristics[J]. Journal of Materials Processing Technology, 2007,(11) :305--311.
  • 9MORDIKE B L, EBERT T. Magnesium: properties-applicationspotential[J]. Materials Science and Engineering A, 2001,302(1): 37--38.
  • 10ASM international handbook committee. ASM speciality handbook: magnesium and magnesium alloys [M]. Ohio:Materials park,ASM international, 1999.

同被引文献19

  • 1房文斌,张文丛,于振兴,王尔德.镁基储氢材料颗粒尺寸对吸放氢动力学性能的影响[J].稀有金属材料与工程,2005,34(7):1017-1020. 被引量:8
  • 2林根文,周国治,李谦,程晓英,左仲.常压下催化合成氢化镁放氢动力学研究[J].稀有金属材料与工程,2006,35(5):802-805. 被引量:3
  • 3ChenZhenhua(陈振华),YanHongge(严红革),Chen Jihua (陈吉华)et a1.MagnesiumAltoy(镁合金)[M].Beijing:Chemical Industry Press, 2006:446.
  • 4Mordike B L, Ebert T. Mat Sci EngA[J], 2001, 302(1): 37.
  • 5Mihriban O P, AA K. Adv Eng Inform[J], 2003, 5:866.
  • 6Tien C C, Jian Y W Chia M O et al. J Mater Process Tech[J], 2003, 140:588.
  • 7lMiaoQing(苗青),HuLianxi(胡连喜),SunHongfei(孙宏飞)et al.中国有色金属学报[J],2009,19(2):s326.
  • 8Kim W J, An C W, Kim Y S et al. Scripta Mater[J], 2002, 47(1): 39.
  • 9Govinda, Naira K S, Mittala M C et al. Mat Sci Eng A[J], 2001, 304-306:520.
  • 10Takamura H, Miyashita T, Keamegawa A et al. d Alloy Compd[J], 2003, 356-357:804.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部