期刊文献+

Microscopic phase-field study on aging behavior of Ni_(75)Al_(17)Zn_8 alloy 被引量:1

Microscopic phase-field study on aging behavior of Ni_(75)Al_(17)Zn_8 alloy
下载PDF
导出
摘要 The precipitating kinetics of Ni75Al17Zn8 alloy was studied at both 873K and 973K by microscopic phase-field model.The calculation results show that the order-disorder transformation experiences the matrix→lowly-ordered L10 phase→L12 phase at 973 K.And the nucleation of L12 particles belongs to the spinodal decomposition mechanism.As temperature increases,orderings of Al and Zn atoms are resisted,but coarsening of L12 particles is promoted.The value of coarsening kinetic exponents approaches to 1/2.In addition,the discussions about Ni-Al anti-site defect and Zn substitutions for Ni site and Al site exhibit that the higher the temperature,the more distinctive the Ni-Al anti-site defect,but the less the Zn substitution. The precipitating kinetics of Ni75Al17Zn8 alloy was studied at both 873K and 973K by microscopic phase-field model.The calculation results show that the order-disorder transformation experiences the matrix→lowly-ordered L10 phase→L12 phase at 973 K.And the nucleation of L12 particles belongs to the spinodal decomposition mechanism.As temperature increases,orderings of Al and Zn atoms are resisted,but coarsening of L12 particles is promoted.The value of coarsening kinetic exponents approaches to 1/2.In addition,the discussions about Ni-Al anti-site defect and Zn substitutions for Ni site and Al site exhibit that the higher the temperature,the more distinctive the Ni-Al anti-site defect,but the less the Zn substitution.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第4期675-681,共7页 中国有色金属学报(英文版)
基金 Projects(50941020,10902086)supported by the National Natural Science Foundation of China
关键词 microscopic phase-field Ni75Al17Zn8 alloy coarsening behavior microscopic phase-field Ni75Al17Zn8 alloy coarsening behavior
  • 相关文献

参考文献4

二级参考文献33

  • 1Xiaoling Li, Zheng Chen, Bing Liu, Yongxin Wang Department of Materials Science and Engineering, Northwestern Polytechnical University. Xi’an, 710072, China.Transition from Metastablity to Instability in Dynamics for the Precipitation of δ'(Al_3Li)[J].Rare Metals,2001,20(4):240-247. 被引量:7
  • 2[1]Huang W. and Chang Y. A. Thermodynamic properties of the NiAl-Cr system. Intermetallics, 1999, 7: 863-874.
  • 3[2]Dupin N., Ansara I. and Sundman B. Thermodynamic Re-Assessment of the ternary system Al-Cr-Ni. Calphad, 2001, 25 (2):279-298.
  • 4[3]Pareige C., Soisson F., Martin G. et al. Ordering and phase separation in Ni-Cr-Al: Monte Carlo simulations vs three-dimensional atom probe. Acta Materialia, 1999, 47(6): 1889-1899.
  • 5[4]Pareige-Schmuck C., Soisson F. and Blavette D. Ordering and phase separation in low supersaturated Ni-Cr-Al alloys: 3D atom probe and Monte Carlo simulation. Materials Science Engineering A, 1998, 250: 99-103.
  • 6[5]Broz P., Svoboda M., Bursik J. Et al. Theoretical and experimental study of the influence of Cr on the γ+ γ' phase field boundary in the Ni-Al-Cr system. Materials Science and Engineering A,2002, 325: 59-65.
  • 7[6]Wu K., Chang Y.A. and Wang Y. Simulating interdiffusion microstructures in Ni-Al-Cr diffusion couples: a phase field approach coupled with CALPHAD database. Scripta Materialia, 2004, (50)8: 1145-1150.
  • 8[7]Khachaturyan A. G. Theory of Structural Transformations in Solids. New York: Wiley, 1983, 23-60.
  • 9[8]Chen L. Q. A computer simulation technique for spinodal decomposition and ordering in ternary systems. Scripta Metallurgica et materialia, 1993, 29: 683-688.
  • 10[9]Jia C. C., Ishida K. And Nishizawa T. Partition of alloying elements between γ(A1), γ'(L12), and β(B2) phase in Ni-Al base systems. Metallurgical and material transactions A, 1994, 25A:473-485.

共引文献6

同被引文献22

  • 1ZAPOLSKY H, PAREIGE C, MARTEAU L, BLAYETTE D. Atom probe analyses and numerical calculation of ternary phase in Ni-AI-Y system [J]. Calphad, 2001, 25(1): 125-134.
  • 2ZHU J Z, LIU Z K, YAITHYANATHAN Y, CHEN L Q. Linking phase-field model to CALPHAS: Application to precipitate shape evolution in Ni-base alloys [J]. Scripta Mater, 2002, 46: 401-416.
  • 3CHEN Qing, MA Ning, WU Kai-sheng, WANG Yun-zhi. Quantitative phase field modeling of diffusion-controlled precipitate growth and dissolution in Ti-AI-Y [J]. Scripta Materialia, 2004, 50: 471-476.
  • 4YAMANAKA A, TAKAKI T, TOMITA Y. Elastoplastic phase-field simulation of self-and plastic accommodations in cubic-? tetragonal martensitic transformation [J]. Materials Science and Engineering A, 2008,480(1-2):244-252.
  • 5KOYAMA T. Phase-field modeling of microstructure evolutions in magnetic materials [J]. Sci Technol Adv Mater, 2008, 9: 1-9.
  • 6LUO W, SHEN C, WANG Y. Nucleation of ordered particles at dislocations and formation of split patterns [J]. Acta Mater, 2007, 55: 2579-2586.
  • 7ZHANG W, JIN Y, KHACHATURYAN A. Phase field microelasticity modeling of heterogeneous nucleation and growth in martensitic alloy [J]. Acta Mater, 2007, 55: 565-574.
  • 8SIMMONS J, WEN Y, SHEN C, WANG Y. Microstructural development involving nucleation and growth phenomena simulated with the phase field method [J]. Mat Sci Eng A, 2004, 365: 136-143.
  • 9GRANASY L, BORZSONYI T, PUSZTAI T. Crystal nucleation and growth in binary phase-field theory [J]. Phys Rev Lett, 2002, 88: 206105.
  • 10WEN Y, SIMMONS J, SHEN C, WOODWARD C, WANG Y. channel dislocation activity and y' rafting in single crystal Ni-AI [J]. Acta Mater, 2007, 55: 5369-5381.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部