期刊文献+

非正交联合对角化盲分离算法的可辨识性研究 被引量:3

A Study of Identifiability for Blind Signal Separation via Nonorthogonal Joint Diagonalization
下载PDF
导出
摘要 该文从非正交联合对角化的唯一性条件出发,研究了盲分离算法的可辨识性问题。由接收信号的二阶统计量和高阶累积量分别组成的目标矩阵具有可对角化的结构,因此可以用非正交联合对角化的方法解决盲分离问题。指出非正交联合对角化的唯一存在条件是:由对角矩阵中相同位置的对角元素所组成的向量两两线性无关。从该条件出发推导出基于二阶统计量的非正交联合对角化算法实现盲分离的充分必要条件是源信号自相关函数的形状不同,基于高阶累积量的算法实现盲分离的充分必要条件是源信号中没有高斯信号,从而为运用非正交联合对角化解决盲分离问题提供了理论指导。数值仿真试验验证了结论的正确性。 Based on the uniqueness condition of the solution of Nonorthogonal Joint Diagonalization (NJD), the identifiability for Blind Signal Separation (BSS) is analyzed. Firstly, it is proved that the target matrices consisting of Second-Order Statistics (SOS) or higher-order cumulant are diagonalizable, so the problem of BSS can be solved by NJD. The uniqueness condition for NJD is that the vectors consisting of diagonal elements in the same position of diagonal matrix are pairwise linearly independent. From this proposition,the necessary and sufficient condition for BSS is deduced. For second-order statistics based BSS, the condition is that the source signals have not the identical autocorrelation shape. For higher-order cumulant, there is not Gaussian signal in sources. The above conclusion provides a mathematical foundation for the BSS methods based on the NJD. Numerical simulations confirm the conclusion in this paper.
出处 《电子与信息学报》 EI CSCD 北大核心 2010年第5期1066-1070,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60775013)资助课题
关键词 信号处理 盲信源分离 联合对角化 可辨识性 唯一存在条件 高阶累积量 Signal processing Blind Signal Separation (BSS) Joint diagonalization Identifiability Uniqueness condition Higher-order cumulant
  • 相关文献

参考文献14

  • 1Cardoso J F and Souloumiac A.Blind beamforming for non Gaussian signals[J].IEE Proceedings,Part F:Radar and Signal Processing,1993,140(6):362-370.
  • 2Belouchrani A,Meraim K,Cardoso J F,and Moulines E.A blind source separation technique using second-order statistics[J].IEEE Transactions on Signal Processing,1997,45(2):434-444.
  • 3Yeredor A.Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation[J].IEEE Transactions on Signal Processing,2002,50(7):1545-1553.
  • 4Ziehe A,Laskov P,Nolte G,and Müller K R.A fastalgorithm for joint diagonalization with non-orthogonaltransformations and its application to blind source separation[J].Journal of Machine Learning Research,2004,5(12):777-800.
  • 5Li X L and Zhang X D.Nonorthogonal joint diagonalization free of degenerate solution[J].IEEE Transactions on Signal Processing,2007,55(5):1803-1814.
  • 6Wang Fu-xiang,Liu Zhong-kan,and Zhang Jun.Nonorthogonal joint diagonalization algorithm based on trigonometric parameterization[J].IEEE Transactions on Signal Processing,2007,55(11):5299-5308.
  • 7Souloumiac A.Non-orthogonal joint diagonalization by combining givens and hyperbolic rotations[J].IEEE Transactions on Signal Processing,2009,57(6):2222-2231.
  • 8Zhang Hua,Feng Da-zheng,and Zheng Wei-xing.A study of identifiability for blind source separation via nonorthogonal joint diagonalization[C].IEEE International Symposium on Circuits and Systems,Seattle,Washington,USA,2008:3230-3233.
  • 9Comon P.Canonical tensor decompositions[R].Technology report,Laboratory of Information Signal System,French National Center for Scientific Research,June,2004.
  • 10Giorgio T and Rasmus B.A comparison of algorithms for tting the PARAFAC model[J].Computational Statistics and Data Analysis,2006,50(7):1700-1734.

同被引文献30

  • 1汪雄良,王正明.基于快速基追踪算法的图像去噪[J].计算机应用,2005,25(10):2356-2358. 被引量:6
  • 2郭洁,沈连丰,宋铁成,叶芝慧.基于盲源分离的无线视频通信研究与仿真[J].东南大学学报(自然科学版),2007,37(1):13-17. 被引量:3
  • 3Hyvarinen A,Karhunen J,oja Erkki.独立成分分析[M].周宗潭,等译.北京:电子工业出版社,2007.
  • 4刘强,尹忠科,王建英.利用FFT实现语音信号稀疏分解的改进算法[J].计算机工程与应用,2007,43(26):74-75. 被引量:3
  • 5SOULOUMIAC A. Blind source detection and separation using second order non-stationarity [ C ]//Proc of International Conference on Acoustics, Speech, and Signal Processing. 1995:1912-1915.
  • 6CHOI S, CICHOCKI A, BELOUCHRANI A. Second order nonstationary source separation [ J]. The Journal of VLSI Signal Processing ,2002,32 (1-2) :93-104.
  • 7CHOI S, CICHOCKI A,AMARI S. Equivariant nonstationary source separation [ J ]. Neural Networks ,2002,15 ( 1 ) : 121-130.
  • 8HYVARINEN A. Blind source separation by nonstationarity of variance: a cumulant-based approach [ J ]. IEEE Trans on Neural Notworks ,2001,12 (6) : 1471-1474.
  • 9De LATHAUWER L, CASTAING J. Blind identification of underdetermined mixtures by simultaneous matrix diagonalization [ J]. IEEE Trans on Signal Processing ,2008,56 (3) : 1096-1105.
  • 10方 耀.基于稀疏分解的非合作猝发信号解调技术研究[D]杭州:杭州电子科技大学,2010.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部