期刊文献+

氨基酸广义信息因子分析标度组合支持向量机模型用于β-turns预测及特征分析 被引量:1

Using factor analysis scales of generalized amino acid information for prediction and characteristic analysis of β-turns in proteins based on a support vector machine model
原文传递
导出
摘要 提出一种新的组合方法用于β-turns预测和特征分析.该方法包括两步:如何表征β-turns特征和如何构建其预测模型.第一步应用氨基酸广义信息因子分析标度表征蛋白质中β-turns的结构特征,该标度涉及氨基酸的疏水性、α-螺旋与转角倾向、体积性质、构成特征、局部柔性及静电性.第二步以426个蛋白质为训练集样本,通过留1/7法交互验证,基于支持向量机建立β-turns预测模型.该模型分别成功地预测547和823个蛋白的β-turns.所得结果与所对比方法结果相当,更重要的是,SVM模型提供了一些关于β-turns特征的重要结构信息.该组合方法可以进一步尝试用于蛋白质结构预测及特征分析. This paper offered a new combined approach to predict and characterize β-turns in proteins.The approach concluded two key steps,i.e.,how to represent the features of β-turns and how to develop a predictor.The first step was to use factor analysis scales of generalized amino acid information (FASGAI),involving hydrophobicity,alpha and turn propensities,bulky properties,compositional characteristics,local flexibility and electronic properties,to represent the features of β-turns in proteins.The second step was to construct a support vector machine (SVM) predictor of β-turns based on 426 training proteins by a sevenfold cross validation test.The SVM predictor thus successfully predicted β-turns on 547 and 823 proteins by an external validation test,respectively.Our results were compared with the previously best known β-turn prediction methods and were shown to give comparative performance.Most importantly,the SVM model provided some important information related to β-turn residues in proteins.Satisfying results demonstrated that the present combination approach showed great application prospect in the prediction of protein structures.
作者 梁桂兆 赵巍
出处 《中国科学:化学》 CSCD 北大核心 2010年第5期510-516,共7页 SCIENTIA SINICA Chimica
基金 重庆大学创新基金(200711C1A0010260) 重庆大学创新能力培育基金(CDCX008)项目资助
关键词 β-turns 氨基酸广义信息因子 分析标度(FASGAI) 支持向量机(SVM) β-turns factor analysis scales of generalized amino acid information support vector machine
  • 相关文献

参考文献43

  • 1Anfinsen CB. Principles that govern the folding of protein chains. Science, 1973, 181:223--230.
  • 2Richardson JS. The anatomy and taxonimy of protein structure. Adv Protein Chem, 1981, 34:167- 339.
  • 3Krigbaum WR, Knutton SP. Prediction of the amount of secondary structure in a globular protein. Proc Natl Acad Sci USA, 1973, 70: 2809-2813.
  • 4Chou PY, Fasman GD. Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry, 1974, 13:211--222.
  • 5Chou PY, Fasman GD. Prediction of protein conformation. Biochemistry, 1974, 13:222--245.
  • 6Chou PY, Fasman GD. Prediction of secondary structure of proteins from amino acid sequence. Adv Enzymol Relat Subj Biochem, 1978, 47: 45--148.
  • 7Lim VI. Structural principles of globular protein secondary structure. J Mol Biol, 1974, 88:857--872.
  • 8Gamier J, Osguthorpe DJ, Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol, 1978, 120:97--120.
  • 9Fasman GD. The development of the prediction of protein structure. In: Fasman GD. Ed. Prediction of Protein Structure and the Principles of Protein Conformation. New York: Plenum, 1989. 317--358.
  • 10Muskal SM. Kim S H. Predicting protein secondary structure content: A tandem neural network approach. J Mol Biol, 1992, 225:713--727.

同被引文献46

  • 1梅虎,梁桂兆,周原,李志良.支持向量机用于定量构效关系建模的研究[J].科学通报,2005,50(16):1703-1708. 被引量:28
  • 2Dyson HJ, Wright PE. Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol, 2005, 6:197-208.
  • 3Dyson H J, Wright PE. Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol, 2002, 12:54-60.
  • 4Petsalaki E, Russell RB. Peptide-mediated interactions in biological systems: new discoveries and applications. Curr Opin Biotech, 2008, 19: 344-350.
  • 5Smith GP, Petrenko VA. Phage display. Chem Rev, 1997, 97:391-41.
  • 6Weiser AA, Or-Guil M, Tapia V, Leichsenring A, Schuchhardt J, Fr0mmel C, Volkmer-Engert R. SPOT synthesis: Reliability of array-based measurement of peptide binding affinity. Anal Biochem, 2005, 342:300-311.
  • 7Hou T, McLaughlin W, Lu B, Chen K, Wang W. Prediction of binding affinities between the human amphiphysin-1 SH3 domain and its peptide ligands using homology modeling, molecular dynamics and molecular field analysis. J Proteome Res, 2006, 5:32-43.
  • 8Hou T, Zhang W, Case DA, Wang W. Characterization of domain-peptide interaction interface: A case study on the amphiphysin-1 SH3 domain. JMol Biol, 2008, 376:1201-1214.
  • 9Hou T, Xu Z, Zhang W, McLaughlin WA, Case DA, Xu Y, Wang W. Characterization of domain-peptide interaction interface. Mol Cell Proteomics, 2009, 8:639-649.
  • 10Cortes C, Vapnik V. Support-vector networks. Mach Learn, 1995, 20:273-297.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部