期刊文献+

联合生物加工工艺生产乙醇的研究展望 被引量:4

Perspectives of Producing Ethanol by Consolidated Bio-processing Technology
下载PDF
导出
摘要 利用生物能源转化技术生产乙醇能缓解非再生化石能源日渐枯竭带来的能源压力。来源广泛的纤维素将是很有潜力的生产乙醇原料。然而由于各种原因,当前乙醇生产成本较高,乙醇生产难以规模化。联合生物加工技术,一体化程度高,能有效降低生产成本,未来发展前景广阔。 Using bio-energy conversion technology to producing ethanol can relieve gradually exhausting non-renewable fossil energy pressures.Cellulose will be a potential raw in ethanol production because of extensive sources and lower price.The cost of practical production is high at present due to all kinds of reasons,which are also the reasons why the ethanol production cannot be applicable in factory.The processes consolidated bio-processing(CBP),featuring cellulase production,cellulose hydrolysis and fermentation in one step,is an alternative approach with outstanding potential.
出处 《湖南农业科学》 2010年第4期110-112,共3页 Hunan Agricultural Sciences
关键词 生物能源转化 联合生物加工 乙醇 bio-energy conversion consolidated bio-processing ethanol
  • 相关文献

参考文献16

  • 1Himmel M E, Ding S Y, Johnson D K, et al. Biomass recalcitrance: Engineering plants and enzymes for biofuels production [J]. Science,2007, 315 : 804-807.
  • 2Foust T S, Ibsen K N, Dayton D C, et al. The Biorefinery In Biomass Recalcitrance: Deconstructing the Plant Cell Wall for Bioenergy[M]. London:Blackwell Publishing, 2008.7-35.
  • 3Zhang Y H P, Lynd L R. Cellulose utilization by clostridium thermocellum: bioenergetics and hydrolysis product assimilation [J]. Proc Natl Acad Sci USA, 2005, 102.7321-7325.
  • 4Zhang Y H P, Lynd L R. Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum [J].Bacteriol, 2005, 187: 99-106.
  • 5Strobel H P, Lynn B. Proteomic analysis of ethanol sensitivitiy in Clostridium thermocellum [C]. In Proceeding of the National Meeting of the American Society of Microbiology May 23-27th 2004. New Orleans, LA.
  • 6Lynd L R, Baskaran S, Casten S. Salt accumulation associated with KOH added for pH control, and not ethanol, limits growth um thermosaccharolyticum HG-8 atelevated feed xylose concentrations in continuous culture[J]. Biotechnol Prog, 2001, (17): 118-125.
  • 7Shaw A J, Podkaminer K K, Desai SG, et al. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield [J]. Proc Natl Acad Sci USA, 2008, 105: 13769-13774.
  • 8Ingrain L O, Aldrich H C, Borges A C C, et al. Enteric bacterial catalysts for fuel ethanol production [J]. Biotechnol Prog, 1999, 15: 855-866.
  • 9van Zyl W H, Lynd L R, den Haan R, et al. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae [J]. Adv Biochem Eng Biotechnol, 2007, 108: 205-235.
  • 10Travers K J, Patil C K, Wodicka L, et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation [J]. Cell, 2000, 101: 249-258.

同被引文献56

  • 1杨涛,马美湖.纤维素类物质生产酒精的研究进展[J].中国酿造,2006,25(8):11-15. 被引量:17
  • 2李猛,梁辉,王述彬.利用CBP发酵纤维素生产燃料乙醇的研究进展[J].河南化工,2007,24(2):15-16. 被引量:4
  • 3沈光,王钧.海南发展木薯产业有资源优势[J/OL](2006-09-30)http://www. estarch, com/subject/news/47/news_2414, html.
  • 4张永新,刘志民,郝小明,等.一种从木薯发酵制备乙醇的废液中回收固体残渣的方法:中国,200710304356[P].2008-10-22.
  • 5Himmel M E, Ding S Y, Johnson D K, Adney W S, Nimlos M R, Brady J W, et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production[J]. Science ,2007,315:804-807.
  • 6Zhang Y H P, Hitmncl M E, Mielenz J R. Outlook for cellutase improvement: screening and selection strategies [J]. Biotechnol Adv ,2006,24:452-481.
  • 7Abdelbanat B M A, Hoshida H, Ano A, Nonklang S, Akada R. High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the tradi- tional process using mesophilic yeast? [J]. Appl Microbiol Biotechnol ,2010,85:861-867.
  • 8D'Amore T, Celotto G, Russell 1, Stewart G G. Selection and optimization of yeast suitable for ethanol production at 40 ?C[J]. Enzyme Microb Technol , 1989,11:411-416.
  • 9Dmytruk 0 V, Dmyt'uk K V, Abbas C A, Voronovsky A Y, Sibirny A A. Engineering of xylose reduetase and overexpres- sion of xylitol dehydrogenase and xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha[J]. Mierob Cell Fact ,2008,7:21.
  • 10Pessani N K, Atiyeh H K, Wilkins M R, Bellmer D D, Banat I M. Simultaneous saccharification and fermentation of Kanlow switchgrass by thermotolerant Kluyveromyces nutrxianus IMB3: the effect of enzyme loading, temperature and high solid load- ings[J]. Bioresour Techonol ,2011,102: 10618-10624.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部