期刊文献+

二维多项式非线性系统的镇定控制 被引量:1

Stabilizing control of 2 D polynomial nonlinear systems
原文传递
导出
摘要 针对二维多项式非线性系统,提出了基于特征根负定配置的镇定控制方法.引入自由多项式,克服系统状态矩阵描述的不惟一性,进而降低控制综合问题求解的保守性.将特征根负定配置问题转化成多项式正定性验证问题,控制器设计问题通过多项式分解最终可由半定规划工具数值求解.在所提出的处理方法的基础上,讨论了4类二维多项式非线性系统的镇定控制问题.仿真结果验证了所提出方法的有效性. A stabilizing control scheme is proposed for 2D polynomial nonlinear systems based on negative root placement.Free polynomial is introduced to overcome the demerit of non-uniqueness description of system state matrix, which reduces the conservatism of solution for control synthesis.The problem of negative root placement is transmitted into positive polynomial validation problem.By the technique of polynomial decomposition,controller design problem is finally solved numerically by semidefinite programming tools.Stabilizing control for four types of 2D polynomial systems is discussed based on the addressed technique.Simulation results show the effectiveness of the presented method.
出处 《控制与决策》 EI CSCD 北大核心 2010年第5期753-757,共5页 Control and Decision
基金 国家自然科学基金项目(60674028 60674071 60604015) 浙江省教育科学规划项目(SCG170)
关键词 非线性控制 镇定控制 特征根负定配置 Nonlinear control Stabilizing control Negative root placement
  • 相关文献

参考文献2

二级参考文献19

  • 1Parrilo P A. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization [D]. Pasadena: California Institute of Technology, 2000.
  • 2Papachristodoulou A. Analysis of nonlinear time-delay systems using the sum of squares decomposition[C]. Proc of the 2004 American Control Conf. Boston, 2004: 4153-4158.
  • 3Sturm J F. Using SeDuMi 1.02 : A Matlab toolbox for optimization over symmetric cones [ J ]. Optimization Methods and Software, 1999, 11(1): 625-653.
  • 4Chesi G, Garulli A, Tesi A, et al. Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems: An LMI approach [J]. IEEE Trans on Automatic Control, 2005, 50(3): 365- 370.
  • 5Chesi G. Estimating the domain of attraction via union of continuous families of Lyapunov estimates [J]. Systems & Control Letters, 2007, 56(4): 326-333.
  • 6Jarvis-Wloszek Z. Lyapunov based analysis and controller synthesis for polynomial systems using sumof-squares optimization [D]. Berkeley: University of California, 2003.
  • 7Lofberg J. YALMIP : A toolbox for modeling and optimization in Matlab[C]. Proc of the CACSD Conf. Taipei, 2004: 284-289.
  • 8Kocvara M, Stingl M. PENBMI user's guide[EB/OL]. http://tomopt. com/docs/penbmi. pdf.
  • 9Prajna S, Parrilo P A, Rantzer A. Nonlinear control synthesis by convex optimization[J]. IEEE Trans on Automatic Control, 2004, 49(2): 310-314.
  • 10Tsiotras,P.Further passivity results for the attitude control problem[].IEEE Transactions on Aerospace and Electronic Systems.1998

共引文献1

同被引文献11

  • 1李劲松,颜国正,冯剑舟,宋立博.基于线性二次型最优控制策略的倒立摆实验系统搭建[J].实验室研究与探索,2010,29(3):38-40. 被引量:8
  • 2苏信,孙政顺,赵世敏.板球系统的模糊控制方法研究[J].计算机仿真,2006,23(9):165-167. 被引量:8
  • 3Hauser J, Sastry S, Kokotovic P. Nonlinear control via approxi- mate input-output Linearization: the ball and beam example [J]. IEEE Transaction on automatic control, 1992 (37): 392-398.
  • 4Humusoft Ltd. Use's manual for CE151- Ball~.Plate Apparatus [Z]. 1993.
  • 5Oreg Andrews, Chris Colasuonm), Aaron Herrmann. Ballon Plate Balancing System [R]. 2004.
  • 6Ker C C, Lin C E, Wang R T. Tracking and Blance Control of Ball and Plate System [J]. Chinese In;titute of engineers, 2007, 30 (3): 459-470.
  • 7Fan X, Zhang N, Tang S. Trajectory planning and tracking of hall and plate system using hierarchical fuzzy control scheme [J]. Fuzzy Sets and Systems, 2003 (144): 297 -312.
  • 8Andrews G, Colasuonno C, Herrmann A. Ball on Plate Balancing System Progress Report for ECSE-4962 Control System Design [J]. 2004, 3.
  • 9白名.非线性板球系统解耦与控制算法研究[D].吉林:吉林大学,2008.
  • 10于芳,李祖枢.一种全自主足球机器人单目视觉定位的新方法[J].计算机测最与控制,2007,15(12):1781-1784.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部