期刊文献+

矩形板边界支撑优化设计

OPTIMIZATION OF BOUNDARY SUPPORT FOR NATURAL FREQUENCY CONTROL OF RECTANGULAR PLATE
原文传递
导出
摘要 采用瑞利-里兹法分析、计算矩形板附加弹性铰(简)支撑的最小刚度和最优支撑位置,使板的第一阶固有频率达到原结构的第二阶频率。矩形板仅有一边固定(固支或简支),其他边自由,弹性支撑位于固定边相对的自由边界上。由振动系统能量泛函取极小值原理,构建特征频率方程,利用拉格朗日乘子施加最优支撑位置应满足的设计条件。算例结果表明,该文提出的方法是可靠的,能得到满意的结果。 The Rayleigh-Ritz method is utilized to determine the minimum stiffness and optimal position of elastic point (simple) supports,so that the fundamental natural frequency of a rectangular plate can be raised to the original second frequency. The plate has only one boundary edge restrained (clamped or simply supported),and the additional supports are placed along the free edge opposite to the restrained boundary. Lagrange multipliers are applied to enforce the optimality conditions for the position design of a support. The minimum stiffness of the support can be found numerically by solving a characteristic eigenvalue problem. Illustrative examples are employed to verify the solution procedure and show that the present method is feasible and effective for the optimal design of a flexible support of a finite stiffness.
作者 王栋 段宇博
出处 《工程力学》 EI CSCD 北大核心 2010年第5期27-31,共5页 Engineering Mechanics
基金 航空基金项目(2007ZA53002)
关键词 最小支撑刚度 最优支撑位置 矩形板 振动频率 瑞利-里兹法 minimum support stiffness optimal support position rectangular plate vibration frequency Rayleigh-Ritz method
  • 相关文献

参考文献10

  • 1罗鹰,段宝岩,狄杰建.工程结构支撑条件优化设计[J].固体力学学报,2004,25(2):217-220. 被引量:3
  • 2蹇开林,燕乐纬,朱学旺.基于遗传算法的结构支撑位置优化[J].应用力学学报,2007,24(2):306-309. 被引量:12
  • 3宋华,胡瑞,任辉启,严东晋.内部为弹性点支承的简支板的振动分析[J].地下空间与工程学报,2007,3(4):613-616. 被引量:4
  • 4Won K M, Park Y S. Optimal support positions for a structure to maximize its fundamental natural frequency [J]. Journal of Sound and Vibration, 1998, 213: 801-- 812.
  • 5Friswell M I, Wang D. The minimum support stiffness required to raise the fundamental natural frequency of plate structures [J]. Journal of Sound and Vibration, 2007, 301: 665--677.
  • 6Wang D, Jiang J S, Zhang W H. Optimization of support positions to maximize the fundamental frequency of structures [J]. International Journal for Numerical Methods in Engineering, 2004, 61: 1584--1602.
  • 7Zhu J H, Zhang W H. Maximization of structural natural frequency with optimal support layout [J]. Structural and Multidisciplinary Optimization, 2006, 31 : 462--469.
  • 8Kim C S, Dickinson S M. The flexural vibration of rectangular plates with position supports [J]. Journal of Sound and Vibration, 1987, 117: 249--261.
  • 9Bhat R B. Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh-Ritz method [J]. Journal of Sound and Vibration, 1985, 102: 493 --499.
  • 10Leissa A W. The free vibration of rectangular plates [J] Journal of Sound and Vibration, 1973, 31 : 257--293.

二级参考文献37

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部