期刊文献+

基于独立分量分析的瞬时混合语音信号盲分离算法研究 被引量:1

Research on the Blind Source Separation Algorithm of Instantaneously Mixed Speech Signals Based on ICA(Independent Component Analysis)
下载PDF
导出
摘要 近些年,信号处理在理论与方法方面发展速度很快,独立分量分析技术已成了信号处理领域内重要的组成部分。讨论了线性瞬时混合情况下,语音信号盲分离的算法,阐述了算法的原理,并进行了实验仿真,以此来证明算法的有效性。 Recently,theories and methods of signal processing are developing quickly,and ICA has become an important part of signal processing field. This paper discusses the blind source separation algorithm of speech signals under the linear instantaneous mixture,expounds the principles of this algorithm,and makes the experimental simulation for proving the effectiveness of this algorithm.
作者 徐欢
出处 《科技情报开发与经济》 2010年第11期99-100,共2页 Sci-Tech Information Development & Economy
关键词 瞬时混合语音信号 盲信号分离 独立分量分析 instantaneously mixed speech signal blind signal separation ICA
  • 相关文献

参考文献3

  • 1Lee T W.Independent Component Analysis:Theory and Applications[M].[s.l]:Kluwer Academic Publishers,1988.
  • 2Chart D.Blind Signal Separation.[D].Cambridge:Cambridge University,1997.
  • 3张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211

二级参考文献51

  • 1[1]Amari S.A theory of adaptive pattern classifiers [J].IEEE Trans.Electronic Computers,1967,16:299-307.
  • 2[2]Amari S.Natural gradient works efficiently in learning [J].Neural Comoutation,1998,10:251-276.
  • 3[3]Amari S,Cichocki A.Adaptive blind signal processing:Neural network approaches [J].Proc.IEEE,1998 ,86:2026-2048.
  • 4[4]Basak J,Amari S.Blind separation of uniformly distributed signals:A general approach [J].IEEE Trans.Neural Networks,1999,10:l173-1185.
  • 5[5]Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7:1129-1159.
  • 6[6]Burel G.Blind separation of .sources:A nonlinear neural algorithm [J].Neural Networks,1992,5:937-947.
  • 7[7]Cao X R,Liu R W.A general approach to blind source separation [J].IEEE Trans.Signal Processing,1996,44:562-571.
  • 8[8]Cardoso J F.Blind signal separation:Statistical principles [J].Proc.IEEE,1998,86(10):2009-2025.
  • 9[9]Cardoso J F,Laheld B.Equivariant adaptive source separation [J].IEEE Trans.Signal Processing,1996,44:3017 - 3029.
  • 10[10]Cardoso J F,Souloumiac A.Blind beamfomrming for non-Gaussian signals[J].lEE Proc.-F,1993,140:362-370.

共引文献210

同被引文献4

  • 1Hiroshi S,Shoko A,Shoji M. Underdetermined convolutive blind source separation via frequency Bin-Wise clustering and permutation alignment[J]. IEEE Transactions on Audio, Speech, and Language Processing,2011,19(3):516-527.
  • 2Zhou G X,Yang Z Y,Xie S L. Mixing matrix estimation from sparse mixtures with unknown number of sources[J]. IEEE Transactions on Neural Networks,2011,22(2):211-221.
  • 3张倩蓉,王新新.混合语音信号的盲分离[J].山西电子技术,2008(1):16-17. 被引量:3
  • 4徐丽琴,何晓川.一种有效的语音信号盲分离方法[J].现代电子技术,2010,33(19):87-89. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部