期刊文献+

基于密钥共享的安全多方计算应用 被引量:2

Application of Secure Multi-Party Computation Protocol Based Secret Sharing Scheme
原文传递
导出
摘要 介绍了安全多方计算的基本概念和基于密钥共享的安全多方计算协议。现有的基于密钥共享的安全多方计算协议,能够计算有限域上的任意函数,但是研究表明,如果一个协议使用广泛,那么必然会牺牲性能上的一些代价。构造了函数f(s1,s2,…,sn)=αs1+αs2+…+αsn的安全多方计算协议,对一般化的基于密钥共享的安全多方计算协议进行剪裁,去掉不相关的部分,并增加可验证性,大大提高了协议效率和实用性。 This article describes the basic concepts of secure multi-party computation protocol and the secure multi-party computation protocol based secret sharing scheme. At present the secure multi-party computation protocol based secret sharing scheme can compute a fi nite fi eld of arbitrary functions. However, studies show that, if a protocol be widely used, there would be some inevitable expense of the performance. In this paper, a secure multi-party computation protocol is constructed for f (s1,s2,…,sn)=αs1+αs2+…+αsn, the generalized secure multi-party computation protocol based secret sharing scheme is tailored, the irrelevant parts are eliminated, and the verifi ability is added, thus greatly raising the effi ciency and the practicality of the protocol.
作者 朱彦锋
出处 《信息安全与通信保密》 2010年第5期69-71,共3页 Information Security and Communications Privacy
关键词 安全多方计算 离散对数 可验证性 密钥共享 secure multi-party computation discrete logarithm verifi ability secret sharing
  • 相关文献

参考文献7

  • 1李强,颜浩,陈克非.安全多方计算协议的研究与应用[J].计算机科学,2003,30(8):52-55. 被引量:15
  • 2Schoenmakers B. A Simple Publicly Verifiable Secret Sharing Scheme and its Application to Electronic Voting[J]. Advance in Cryptology- CRYPTO, 1999: 148-164.
  • 3Shamir A. How to Share a Secret[J]. Comm. ACM, 1979, 22(11): 616-613.
  • 4唐春明,石桂花,汤永龙.没有管理者的密钥共享方案[J].通信技术,2008,41(7):175-176. 被引量:2
  • 5Chor B, Goldwasser S, Micali S, et al. Verifiable Secret Sharing and Achieving Simultaneity in the Presence of Faults[C]//Proc. 26th Annual Symposium on the Foundations of Computer Science. [s.l.]: IEEE, 1985 : 383-395.
  • 6Tal Rabin, Michael Ben-Or. Verifiable Secret Sharing and Multiparty Protocols with Honest Majority[C]// Proceedings of the Twenty-first Annual ACM Symposium on Theory of Computing. [s.l.]: ACM, 1989: 73-85.
  • 7Gennaro R, Rahin M, Rabin T. Simplified VSS and Fast-track Multiparty Computations with Applications to Threshold Cryptography[C]//Proc.of the 1998 ACM Symposium on Principles of Distributed Computing. [s.l.]: ACM, 1998: 101-111.

二级参考文献23

  • 1Blakley G R. Safeguarding Cryptographic Keys [C]. Proceeding of National Computer Conference, NJ:AFIPS Press, 1979:313-317.
  • 2Shamir A. How to Share a Secret [J]. Communications of the ACM, 1979, 22 (11): 616-613.
  • 3Beth T, Knobloch H J, Otten M. Verifiable Secret Sharing for Monotone Access Structures [C]. Communications Security Proceeding of the 1st ACM, Virginia 1993; New York: ACM, 1993:189-194.
  • 4Rabin T, Ben-Or M. Verifiable Secret Sharing and Multiparty Protocols with Honest Majority[C]. Theory of Computing Pro. of the twenty-first annual ACM, Washington 1989; New York: ACM, 1989:73-85.
  • 5Damgard I, Thorbek R. Linear Integer Secret-Sharing and Distributed Exponentiation [C]. Proceeding of Public Key Cryptography, Berlin: Springer, 2006, 39(58): 75-90.
  • 6Cramer R, Fehr S. Optimal Black-Box Secret Sharing over Arbitrary Abelian Groups[C]. Proceeding of CRYPTO, California 2002; Berlin: Springer, 2002:272-287.
  • 7Cramer R, Fehr S and Stam M. Black-Box Secret Sharing from Primitive Sets in Algebraic Number Fields[C]. Proceeding of CRYPTO. Santa Barbara 2005; Berlin: Springer, 2005:344-360.
  • 8Gennaro R, Jarecki S, Krawczyk H, etal. Secure Distributed Key Generation for Discrete-Log Based Cryptosystems [J]. Journal of Cryptology, 2007, 20 (01): 51-83.
  • 9Matthew,Franklin, Habert S. Joint encryption and message-efficient secure computation. Journal of Cryptology, 1996,9 (4) : 217-232.
  • 10Paillier P. Public-key cryptosystems based on composite degree residue classes. In : Michael Wiener, ed. Advances in CryptologyEuroCrypt'99, Berlin, 1999. 223-238.

共引文献15

同被引文献6

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部