期刊文献+

分数阶积分-微分方程的迭代解法 被引量:5

Iteration Method for Solving Fractional Order Integro-differential Equations
下载PDF
导出
摘要 介绍了分数阶积分-微分方程和变分迭代法,并利用变分迭代法求解Caputo型分数阶积分-微分方程,从而表明变分迭代法能很好的求解分数阶积分-微分方程. This paper introduces the fractional order integro-differential equations and the varitational iteration method,by means of varitational iteration method the solution of the fractional order integro-differential equations are exactly obtained.The fractional derivative is considered in the Caputo sense.It is observed that the method can be utilized as a powerful and reliable tool for the solution of fractional integro-differential equations.
出处 《琼州学院学报》 2010年第2期1-3,共3页 Journal of Qiongzhou University
关键词 分数阶积分-微分方程 Caputo微分 变分迭代法 拉格朗日乘子 fractional order integro-differential equation caputo derivative variational iteration method lagrange multiplier
  • 相关文献

参考文献7

  • 1I. Podlubny. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications[M ], New York: Academic Press, 1999.
  • 2J. H. He. Approximate analytical solution for seepage flow with fractional derivatives in porous media[ J ], Comput. Methods Appl. Mech. Engrg. 1998 (167) : 57 - 68.
  • 3S. Momani, Z. Odibat. Analytical approach to linear fractional partail differential equations arising in fluild mechanics[J], Phys. Lett. A , 2006 (355) :271 - 279.
  • 4I. Mustafa. The approximate and exact solutions of the space - and time -fractional Burgers equations with initial conditions by variational iteration method[J], J. Math. Anal. Appl. 2008 (345) : 476 - 484.
  • 5M. TattoO, M. Dehghan. On the convergence of He's variational iteration method[J], J. Comput. Appl. Math. 2007 (207) :121 - 128.
  • 6S. Momani, A. Qaralleh. An efficient method for solving systems of fractional integro- differential equations[ J ], Comput. Math. Appl. 2006 (52):459 - 470.
  • 7E. A. Rawashdeh. Numerical solution of fractional integro -differential equations by collocation method[ J], Appl. Math. Comput. 2006 (176):1 - 6.

同被引文献33

  • 1傅建辉.高阶具非线性中立项时滞微分方程正解的存在性[J].华南师范大学学报(自然科学版),2005,37(4):24-27. 被引量:2
  • 2葛美宝,徐定华,王泽文,张文.一类抛物型方程反问题的数值解法[J].东华理工学院学报,2006,29(3):283-288. 被引量:7
  • 3J.Xu,B.Han,L.Li.Frozen Landweber Iteration for Nonlinear Ill-Posed Problems[J].Acta Mathematicae Applicatae Sinica,2007,23(2):329-336. 被引量:8
  • 4Cannon J R,Lin Y,Wang S.Determination of a control parameter in a parabolic partial defferential equation[J].J Aust Math Socser B,1991,33(2):149-163.
  • 5Cannon J R,Lin Y,Xu S.Numerical procedures for the determination of an unknown coefficient in semi-linear parabolic defferential equations[J].Inverse Problem,1994(10):227-243.
  • 6S.Wang,Y.Lin.A finite difference solution to an inverse problem determining a control function in a parabolic partial differential equation[J].Inverse Problem,1989(5):631-640.
  • 7M.Tatari,M.Dehghan.He’s variational iteration method for computing a control parameter in a semi-linear parabolic equation[J].Chaos Solitons Fractals,2007,33(2):671-677.
  • 8Can Baran Emine.Numerical procedures for determining of an unknown parameter in parabolic equation[J].Applied Mathematics and Computation,2005,16(2):1219-1226.
  • 9J H.He.Variational iteration method-Some receant results and new interpretations[J].J Comput Appl Math,2007,207(1):3-17.
  • 10Yongxiang Zhao,Aiguo Xiao.Variational iteration method for singular perturbation initial value problems[J].Computer Physics Communications,2010,181:947-956.

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部