期刊文献+

区分用户长短期兴趣的IBCF改进算法 被引量:1

An Improved Item-based Collaborative Filtering Algorithm with Distinction between User's Long and Short Interests
下载PDF
导出
摘要 协同过滤算法已被成功应用于许多领域,但遇到了可扩展性和精度低等问题,目前提出了许多改进算法,但它们均忽视了用户长短期兴趣对推荐的不同影响.针对这个问题,介绍了一种改进的长短期兴趣数据权重策略,它的关键是识别用户长期兴趣,为此提出了基于资源类别相似性和基于访问资源类别出现频率两种识别方法,并详细分析了这两种识别方法的优缺点.实验表明,将上述方法引入基于资源的协同过滤算法中,能提高推荐精度. Collaborative filtering (CF) algorithms have been successfully used in many applications. But they have some problems, such as scalability, lower precision. And many improved CF algorithms have been proposed. However, all of them can't make a clear distinction between user's long and short interests for improving recommendation precision. In order to solve this problem, animproved weight strategy, consociating user's long and short interests data weighting method is introduced. The key of this method is how to identify user's long interests. So, two user's long interest recognition methods have been proposed: one is based on item's category similarity,the other is based on frequency for visited item's category. Additionally, advantages and disadvantages of these methods are analyzed in detail. The experimental results show that the proposed algorithm with two user's long interest recognition methods outperforms other itembased collaborative filtering algorithms.
出处 《郑州大学学报(理学版)》 CAS 北大核心 2010年第2期35-38,共4页 Journal of Zhengzhou University:Natural Science Edition
基金 山西省基础研究项目(青年) 编号200821024
关键词 基于资源的协同过滤 用户长短期兴趣 兴趣识别方法 兴趣变化 item-based collaborative filtering user's long and short interest interest recognition method change of interest
  • 相关文献

参考文献6

  • 1Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on World Wide Web. Hong Kong, 2001:285-295.
  • 2Ding Y, Li X. Time weight collaborative filtering[C]//Proceedings of the 14th ACM International Conference on Information and Knowledge Management. Chiba,2005:285-492.
  • 3邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 4Zhao J G, Li X Y, Sun J Y. TDCF: time distribution collaborative filtering algorithm[C]//International Symposium on Information Science and Engineering. Shanghai, 2008 : 98-101.
  • 5Sun J Y, Zhao J G, Yu X L. A collaborative filtering algorithm with phased forecast[C]//RSKT09. Gold Coast,2009: 698-705.
  • 6GroupLens research. Movielens data sets[EB/OL]. [2009-03-01]. http://www, grouplens, org/node/73.

二级参考文献10

  • 1J Schafer,J Konstan,J Riedl.Recommender systems in e-commerce[C].In:Proc of ACM E-Commerce.New York:ACM Press,1999.158-166
  • 2Champa Jayawardana,K Priyantha Hewagamage Masashito HIrakawa.A personalize information environment for digital libraries[J].Information Technology and Libraries,2001,20(4):185-196
  • 3J Konstan,B Miller,D Maltz,et al.GroupLens:Applying collaborative filtering to Usenet news[J].Communications of the ACM,1997,40(3):77-87
  • 4高凤荣.个性化推荐系统关键技术研究:[博士论文][D].北京:中国人民大学,2003
  • 5Greg Linden,Brent Smith,Jeremy York.Amazon.com recommendations:Item-to-Item collaborative filtering[J].IEEE Internet Computing,2003,7(1):76-80
  • 6G Adomavicius,A Tuzhilin.Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions[J].IEEE Trans on Knowledge and Data Engineering,2005,17(6):734-749
  • 7Chun Zeng,Chun-Xiao Xing,Li-Zhu Zhou,et al.Similarity measure and instance selection for collaborative filtering international[J].Journal of Electronic Commerce,2004,4(8):115-129
  • 8G Karypis.Evaluation of item-based top-N recommendation algorithms[C].In:Proc of CIKM 2001.New York:ACM Press,2001.247-254
  • 9Brendan Kitts,David Freed,Martin Vrieze.Cross-sell:A fast promotion-tunable customer-item recommendation method based on conditional independent probabilities[C].In:Proc of ACM SIGKDD Int'l Conf.New York:ACM Press,2000.437-446
  • 10KDD2000 Dataset[OL].http://www.ecn.purdue.edu/KDDCUP/data/,2005

共引文献147

同被引文献8

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部