摘要
求解约束条件下的调度和分配的最优解是一个NP难题,因此提出了一种基于自适应概率参数模型的问题空间遗传算法(APPSGA),它较好地解决并发进行硬件资源调度与分配问题,使得在给定的输入控制数据流图中找到使目标函数最小的位置。最后以求解方程中的资源调度为例,用实验验证了该算法的有效性。
It is a NP hard problem to search the optimal solution of scheduling and allocation on constraint condition. This paper presents a adaptive probability problem space genetic algorithm, can solve the problem of concurrent resource scheduling and allocation, and result in a position which makes objective function minimum in a given control data flow graphics, at last, availability of APPSGA is proved by experiment.
出处
《重庆邮电学院学报(自然科学版)》
1999年第1期33-37,共5页
Journal of Chongqing University of Posts and Telecommunications(Natural Sciences Edition)
基金
重庆市应用基础基金
关键词
遗传算法
自适应交叉概率
控制数据流图
多媒体
high level synthesis
genetic algorithm
adaptive crossover probability, adaptive mutation probability
control data flow graphics