期刊文献+

基于改进Keren配准方法的超分辨率算法 被引量:2

A Super-Resolution Algorithm Based on Modified Approach of Keren Registration Method
原文传递
导出
摘要 提出一种基于边缘检测和Keren配准方法的自适应归一化卷积超分辨率重建算法。为了进一步提高低分辨率序列图像间的配准精度,该算法将边缘检测与Keren配准算法相结合。首先利用Roberts算子对图像序列进行边缘检测,然后利用基于简化四参数仿射变换模型的Keren改进算法求出边缘图像间的平移和旋转参数。仿真实验结果表明即使在含有噪声及大角度旋转情况下,相比Keren改进算法该算法配准精度得到了显著提高;其中采用Roberts算子相比其他传统算子可获得更高的配准精度。最后采用自适应归一化卷积超分辨率融合算法进行超分辨率重建,真实混叠图像序列的实验表明,基于提出的这种配准方法的超分辨率重建图像获得了很好的视觉效果和更高的分辨能力,具有良好的应用价值。 An adaptive normalized convolution super-resolution algorithm based on edge detection and Keren registration method is proposed. To further improve registration precision of low-resolution image sequences, we combine Keren registration method with edge detection in the algorithm. Firstly, the edge feature of image sequences is extracted by Roberts operator. Then the registration parameters between edge feature images are obtained by Keren improvement registration method which is based on four parameters affine transformation model. The results of simulation experiment show that if the image edge detection is introduced before the Keren algorithm, the registration precision will be increased greatly even though there are noises and large rotation between images sequences. And a higher precision can be obtained by using Roberts operator compared with other traditional operators. Finally, the adaptive normalized convolution super-resolution fusion algorithm is used to reconstruct high-resolution image from low-resolution image sequences. Excellent reconstruction capability of the super-resolution algorithm based on the proposed registration method is demonstrated through an experimental real aliased image sequences.
出处 《激光与光电子学进展》 CSCD 北大核心 2010年第5期62-67,共6页 Laser & Optoelectronics Progress
基金 国家863计划(2007AA12Z114) 武器装备探索研究项目(7130730)资助课题
关键词 图像处理 超分辨率 图像配准 边缘检测 超分辨率融合 image processing super-resolution image registration edge detection super-resolution fusion
  • 相关文献

参考文献11

  • 1T. S. Huang,R. Y. Tsay. Multiple frame image restoration and registration[J]. Advances in Computer Vision and Image Processing,1984,1(2):317-339.
  • 2S. C. Park,M. K. Park,M. G. Kang. Super-resolution image reconstruction:a technical review[J]. IEEE Signal Processing Magazine,2003,3:21-35.
  • 3R. C. Hardie,K. J. Barnard,E. E. Armstrong. Joint MAP registration and high-resolution image estimation using a sequence of undersampled images[J]. IEEE Trans. Image Processing,1997,12(6):1621-1633.
  • 4S. Farsiu,D. Robinson,M. Elad et al.. Fast and robust multi-frame super-resolution[J]. IEEE Transactions on Image Processing, 2004,10(13):1327-1344.
  • 5范冲,龚健雅,朱建军.一种基于去混叠影像配准方法的POCS超分辨率序列图像重建[J].测绘学报,2006,35(4):358-363. 被引量:12
  • 6D. Keren,S. Peleg,R. Brada. Image sequence enhancement using sub-pixel displacement[C]. Proceedings of Computer Society Conference on Computer Vision and Pattern Recognition,1988. 742-746.
  • 7Fan Chong,Gong Jianya,Zhu Jianjun et al.. An improvement approach based on Keren sub-pixel registration method[C]. ICSP2006 Proceedings,2006.1-4.
  • 8H. Knutsson,C. F. Westin. Normalized and differential convolution:methods for interpolation and filtering of incomplete and uncertain data[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition ,1993. 515-523.
  • 9Tuan Q. Pham,Lucas J. van Vliet,Klamer Schutte. Robust fusion of irregularly sampled data using adaptive normalized convolution[C]. JASP 2006 Proceedings,2006,83268:1-12.
  • 10G. Farneb?ck. Polynomial Expansion for Orientation and Motion Estimation[D]. Sweden:Link?ping University,2002. 19-38.

二级参考文献17

  • 1HARRIS J L, Diffraction and Resolving Power [J]. JOSA,1964, 54(7):931-936.
  • 2GOODMAN J W. Introduction to Fourier Optics [ M ].NewYork: Mc Graw Hill, 1968.
  • 3TSAI R Y, HUANG T S. Muhiframe hnage Restoration and Registration [ J]. Advances in Computer Vision and Image Processing, 1984, (1) : 101-106.
  • 4HUNT B R. Super Resolution of hnages: Algorithms, Principles, Performance [Jl- International Journal of Imaging Systems and Technology, 1995, (6) :297-304.
  • 5HUNT B R, SEMENTILL P. Description of a Poisson Imagery Super Resolution Algorithm. In Astronomical Data Analysis Software and Systems [ R]. SanFrancisco: Astronomical Society of the Pacific, 1992.
  • 6ELAD M, FEUER A, Restoration of A Single Super Resolution hnage from Several Blurred, Noisy and under Sampled Measured Images [J]. IEEE Trans IP, 1997,6(12): 1646-1658.
  • 7BROWN L. Survey of hnage Registration Techniques [J].ACM Computing Surveys, 1992, 24 (12): 325-376.
  • 8BERGEN J R, ANANDAN P, HANNA K J, et al. Hierarchical Model-based Motion Estimation [ A]. Second European Conference on Computer Vision[C]. [s.l]:[s. n.], 1992.237-252.
  • 9KEREN D, PELEG S, BRADA R. Image Sequence Enhancement Using Sub-pixel Displacement [ A]. Proceedings IEEE Conference on Computer Vision and Pattern Recognition[C].[s.l.]:[s.n.], 1988.742-746.
  • 10MARCEL B, BRIOT M, MURRIETA R.Calcul de Translation et Rotation Par la Transformation de Fourier [J]. Traitement du Signal, 1997, 14(2): 135-149.

共引文献11

同被引文献32

  • 1沈焕锋,李平湘,张良培.一种自适应正则MAP超分辨率重建方法[J].武汉大学学报(信息科学版),2006,31(11):949-952. 被引量:21
  • 2Vandewalle P,Susstrunk S,Vetterli M.A frequency domain approach to registration of aliased images with application to super-reselution[J].EURASIP Journal on Applied Signal Processing:Special Issue on Super-Reso-lution,2006,2006:1-14.
  • 3Patanavijit V.Super-resolution reconstruction and its future research direction[J].Assumption University Journal of Technology,2009,12 (3):149-163.
  • 4Vandewalle P.Super-resolution from unregistered aliased images[D].Lausanne:School of Computer and Communication Scienees,Ecole Polytechnique Federale de Lausanne,2006.
  • 5Keren D,Peleg S,Brada R.Image sequence enhancement using sub-pixel displacement[C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Ann Arbor:IEEE,1988:742-746.
  • 6Marcel B,Briot M,Murrieta R.Calcul de translation et rotation par la transformation de fourier[J].Traitement du Sigual,1997,14(2):135-149.
  • 7Lucchese L,Cortelazzo G M.A noise-robust frequency domain technique for estimating planar roto-translations[J].IEEE Transactions on Signal Processing,2000,48(6):1769-1786.
  • 8Vandewalle P,Sbaiz L,Vandewalle J,et al.Super-resolu-tion from unregistered and totally aliased signals using subspace methods[J].IEEE Transactions on Signal Processing,2007,55 (7):3687-3703.
  • 9Park S C,Park M K,Kang M G.Super-resolution image reconstruction:a technical overview[J].IEEE Signal Processing Magazine,2003,20(3):21-36.
  • 10Tsai R Y,Huang T S.Multiframe image restoration and registration[J].Advances in Computer Vision and Image Processing,1984,1 (2):317-339.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部