期刊文献+

最大度是5的可平面图的边染色

Edge colorings of planar graphs with maximum degree five
下载PDF
导出
摘要 对于最大度是Δ的可平面图G,如果χ′(G)=Δ,称G为第一类图;如果χ′(G)=Δ+1,称G为第二类图.χ′(G)表示G的边染色数.1965年,Vizing举例说明Δ=5的可平面图中既有第一类图,也有第二类图.作者运用Discharge方法证明最大度是5且不包含有弦的4-圈和有弦的5-圈,或不包含有弦的4-圈和有弦的6-圈的可平面图是第一类图. Let G be a planar graph of maximum degree Δ,G was said to be class 1 if χ′(G)=Δ and class 2 if χ′(G)=Δ+1,where χ′(G) denoted the chromatic index of G.In 1965,Vizing proved that planar graphs of class 1and class 2 were exist for Δ=5.By applying a discharging method,the author proved that every simple planar graph G with Δ=5 was of class 1,if G had no chordal-4-cycles and chordal-5-cycles,or no chordal-4-cycles and chordal-6-cycles.
作者 倪伟平
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2010年第3期18-23,共6页 Journal of Anhui University(Natural Science Edition)
基金 山东省教育厅科研计划基金资助项目(J08LI66)
关键词 平面图 边染色 最大度 planar graph edge coloring maximum degree cycle
  • 相关文献

参考文献9

  • 1Vizing V G.On an estimate of the chromatic index of a p-graph[J].Diskret Analiz,1964,3(1):25-30.
  • 2Vizing V G.Critical graphs with given chromatic class[J].Diskret Analiz,1965,5(1):9-17.
  • 3Sanders D P,Zhao Y.Planar graphs of maximum degree seven are class 1[J].J Combin Theory Ser B,2001,83(2):201-212.
  • 4Zhang L.Every planar with maximum degree 7 is of class 1[J].Graphs Combin,2000,16(4):467-495.
  • 5Zhou G.A note on graphs of class 1[J].Discrete Math,2003,262(1/3):339-345.
  • 6Bu Y,Wang W.Some sufficient conditions for a planar graph of maximum degree six to be class 1[J].Discrete Math,2006,306(13):1440-1445.
  • 7Li X,Luo R.Edge coloring of embedded graphs with large girth[J].Graphs Combin,2003,19(3):393-401.
  • 8Lam P,Liu J,Shu W,et al.Some sufficient conditions for a planar graph to be of class1[J].Congr Numer,1999,136(1):201-205.
  • 9陈永珠,王维凡.第一类平面图的一个充分条件[J].浙江师范大学学报(自然科学版),2007,30(4):416-420. 被引量:3

二级参考文献7

  • 1Vizing V G.On an estimate of the chromatic index of a p-graph[J].Diskret Analiz,1964,3 (1):25-30.
  • 2Vizing V G.Critical graphs with given chromatic class[J].Diskret Analiz,1965,5 (1):9-17.
  • 3Sanders D P,Zhao Yue.Planar graphs of maximum degree seven are class Ⅰ[J].J Combin Theory Ser B,2001,83(2):201-212.
  • 4Zhang Liming.Every planar with maximum degree 7 is of class 1[J].Graphs Combin,2000,16 (4):467 -495.
  • 5Zhou Guofei.A note on graphs of class 1[J].Discrete Math,2003,262 (1-3):339-345.
  • 6Bu Yuehua,Wang Weifan.Some sufficient conditions for a planar graph of maximum degree six to be class 1[J].Discrete Math,2006,306(13):1440-1445.
  • 7Li Xuechao,Luo Rong.Edge coloring of embedded graphs with large girth[J].Graphs Combin,2003,19 (3):393-401.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部