期刊文献+

改进的蚁群禁忌搜索混合算法 被引量:4

An Improved Hybrid Algorithm Combining Ant Colony Optimization Algorithm and Tabu Search
下载PDF
导出
摘要 蚁群算法作为一种全局搜索的方法,具有正反馈性、并行性、分布性、自组织性等特点,在求解复杂组合优化问题上具有强大的优势。但是,蚁群算法也存在一些不足之处:例如,算法需要较长的搜索时间、容易出现早熟停滞现象。为了更优地解决旅行商问题,改进单纯用蚁群算法求解旅行商问题的结果,通过蚁群算法、免疫算法和禁忌搜索算法自身的特点,分别对三者的优势和不足进行分析,提出一种将三者混合使用的求解旅行商问题的算法。 As a global searching approach, ant colony algorithm ACA has some characteristic, such as positive feedback, distributing, paralleling, self - organizing, etc. But ACA also has many shortcomings, such as slow convergence and being premature. In order to solve traveling salesman problem more satisfactorily, a mixed algorithm is put forward. On the basis of analyzing the characteristics of ACA, immune algorithm and tabu search, a mixed method is founded. Its calculation result indicates that the mixed algorithm ACA , immune algorithm and tabu search is much more effective than the single ACA.
作者 江新姿 高尚
出处 《科学技术与工程》 2010年第14期3513-3516,共4页 Science Technology and Engineering
基金 江苏省高校自然科学基础研究项目(08KJB520003)资助
关键词 蚁群算法 免疫算法 禁忌搜索算法 旅行商问题 ant colony algorithm immune algorithm tabu search traveling salesman problem
  • 相关文献

参考文献4

  • 1Colorni A,Dorigo M,Maniezzo V.An investigation of some properties of an ant algorithm.Proc of the Parallel Problem Solving from Nature Conference (PPSN'92).Brussels,Belgium:Elsevier Publishing,1992;509-520.
  • 2顾军华,谭庆,李娜娜,毛宁.一种新的求解TSP问题智能蚁群优化算法[J].计算机工程与应用,2007,43(25):69-71. 被引量:8
  • 3江新姿,汤可宗,高尚.蚁群算法与免疫算法的混合算法[J].科学技术与工程,2008,8(5):1327-1330. 被引量:10
  • 4江新姿 汤可宗 高尚.蚁群算法与禁忌搜索算法的混合算法[J].山东师范大学学报:自然科学版,2007,4(22):60-62.

二级参考文献14

  • 1胡小兵,黄席樾.蚁群优化算法及其应用[J].计算机仿真,2004,21(5):81-85. 被引量:31
  • 2夏国成,赵佳宝.智能蚂蚁算法求解多目标TSP问题的改进研究[J].计算机工程与应用,2006,42(9):56-59. 被引量:5
  • 3[1]Cdomi A,Dorigo M,Maniezzo V.An investigation of some properties of aIl ant algorithm.Proc of the Parallel Problem Solving from Nature Conference(PPSN'92).Bmssels,Belgium:Elsevier Publishing,1992;509-520
  • 4[4]Gunes M,Sorges U,Bouazizi L ARA the ant colony based routing algorithm for MANETs.Proceedings International Conference on Parallel Processing Workshops.Uuncouver,B C,Canada,2002:79-85
  • 5[5]Lumer E,Fmeta B.Diversity and adaptation in populations of clustering ants Proc of the 3 Conf on Simulation of Adaptive Behavior.MIT Press.1994:499-508
  • 6[6]Parpinelli R S,Lopes H S,Fneitas A A.Data mining wilk an ant colong optimization algnrithm.IEEE Transactions on Evolutionary Computation,2002,6(4):321-332
  • 7[7]Lee Znejung,Lee Chouyuan,Su Shunfeng.An immunity based ant colony optimization algorithm for solving weapon-target assignment problenm.Applied Soft Computing Journal,2002;2(1):39-47
  • 8[8]Silva De A,Ramalk R M.Ant system for the set covering problem.IEEE International Confenence on Systems.Man and Cybernetics,Tucson,AZVSA,2001;5:3129-3133
  • 9Dorigo M,Gambardella L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation,1997,1:53-66.
  • 10Dorigo M,Gambardella L M.Ant colonies for the traveling salesman problem[J].BioSystems,1997,43:73-81.

共引文献17

同被引文献56

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部