期刊文献+

Study on compensating methods of transmission system at 40 Gb/s in photonic crystal fiber

Study on compensating methods of transmission system at 40 Gb/s in photonic crystal fiber
原文传递
导出
摘要 Two compensating methods about solitons transmition systems at 40 Gb/s in a photonic crystal fiber are investigated.The maximum transmission distance of the system is calculated numerically by sliding filters and synchronic modulation technology.The maximum transmission distance increases evidently which occasionally is three times longer than before.The results show that the actions of high order dispersion,polarization mode dispersion,and high order nonlinearity are weakened by the two methods. The compensating effect of synchronic modulation technology is better than that of the other one.The capability of the compensated system is ameliorated,which is shown by eye patterns. Two compensating methods about solitons transmition systems at 40 Gb/s in a photonic crystal fiber are investigated.The maximum transmission distance of the system is calculated numerically by sliding filters and synchronic modulation technology.The maximum transmission distance increases evidently which occasionally is three times longer than before.The results show that the actions of high order dispersion,polarization mode dispersion,and high order nonlinearity are weakened by the two methods. The compensating effect of synchronic modulation technology is better than that of the other one.The capability of the compensated system is ameliorated,which is shown by eye patterns.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2010年第5期471-473,共3页 中国光学快报(英文版)
基金 supported by the National"863"Program of China under Grant No.2006AA09Z243.
关键词 Crystal whiskers DISPERSIONS MODULATION Photonic crystal fibers Crystal whiskers Dispersions Modulation Photonic crystal fibers
  • 相关文献

参考文献15

  • 1N. Nishizawa, Y. Ito, and T. Goto, IEEE Photon. Technol. Lett. 14, 986 (2002).
  • 2E. E. Serebryannikov, M.-L. Hu, Y.-F. Li, C.-Y. Wang, Z. Wang, L. Chai, and A. M. Zheltikov, JETP Lett. 81, 487 (2005).
  • 3J. Xia, D. Chen, L. Yang, J. Qiu, and C. Zhu, Laser Optoelectron. Prog. 42, (2) 8 (2005).
  • 4D. R. Neill and J. Atai, Phys. Lett. A 367, 73 (2007).
  • 5W. J. Wadsworth, J. C. Knight, A. Ortigosa -Blanch, J. Arriaga, E. Silvestre, and P. St. J. Rusell, Electron. Lett. 36, 53 (2000).
  • 6X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, Opt. Lett. 26, 358 (2001).
  • 7K. Kurokawa, K. Tajima, K. Tsujikawa, K. Nakajima, T. Matsui, I. Sankawa, and T. Haibara, J. Lightwave Technol. 24, 32 (2006).
  • 8H. Hasegawa, Y. Oikawa, and M. Nakazawa, Electron. Lett. 43, 119 (2007).
  • 9A. Mecozzi, M. Midrio, and M. Romagnoli, Opt. Lett. 21, 402 (1996).
  • 10Y. Kodama and S. Wabnitz, Opt. Lett. 19, 162 (1994).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部