摘要
利用拓扑方法讨论了一类非线性Sturm-Liouville边值问题-u″=λf(x,u),0≤x≤1,α_0u(0)+β_0u′(0)=0,α_1u(1)+β_1u′(1)=0.研究了上述问题的正解的全局结构,在非线性项f(x,u)不满足条件f(x,u)≥0(u≥0)时获得了正解的存在性.
The following nonlinear Sturm-Liouville problem
{-u″=λf(x,u),0≤x≤1 a0u(0)+βou′(0)=0,a1u(1)+βou′(1)=0.
is discussed by topological methods the above problem is obtained, and is proven under the condition that 0 (u 〉/0). The global structure of the set of positive solutions to the existence of positive solutions of the above problem the nonlinear term f(x,u) does not satisfy f(x,u)≥0(u≥0).
出处
《数学年刊(A辑)》
CSCD
北大核心
2010年第2期183-188,共6页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.10971179)
山东科技大学科学研究春蕾计划(No.2008AZZ050)资助的项目
关键词
边值问题
正解
全局结构
拓扑方法
Boundary value problem, Positive solution, Global structure,Topological methods