期刊文献+

超线性非线性Sturm-Liouville边值问题的正解 被引量:2

Positive Solutions of Superlinear Nonlinear Sturm-Liouville Boundary Value Problems
下载PDF
导出
摘要 利用拓扑方法讨论了一类非线性Sturm-Liouville边值问题-u″=λf(x,u),0≤x≤1,α_0u(0)+β_0u′(0)=0,α_1u(1)+β_1u′(1)=0.研究了上述问题的正解的全局结构,在非线性项f(x,u)不满足条件f(x,u)≥0(u≥0)时获得了正解的存在性. The following nonlinear Sturm-Liouville problem {-u″=λf(x,u),0≤x≤1 a0u(0)+βou′(0)=0,a1u(1)+βou′(1)=0. is discussed by topological methods the above problem is obtained, and is proven under the condition that 0 (u 〉/0). The global structure of the set of positive solutions to the existence of positive solutions of the above problem the nonlinear term f(x,u) does not satisfy f(x,u)≥0(u≥0).
出处 《数学年刊(A辑)》 CSCD 北大核心 2010年第2期183-188,共6页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10971179) 山东科技大学科学研究春蕾计划(No.2008AZZ050)资助的项目
关键词 边值问题 正解 全局结构 拓扑方法 Boundary value problem, Positive solution, Global structure,Topological methods
  • 相关文献

参考文献16

  • 1孙经先.非线性Hammerstein型积分方程的正解的存在性及其应用.数学年刊:A辑,1988,9(1):90-96.
  • 2Agarwal R P,O'Regan D.Two solutions to singular Dirichlet problems[J].J Math Anal Appl,1999,240:433-445.
  • 3Cai G Q.The existence of positive solutions for singular boundary value problem[J].Acta Math Scientia,2002,22A:521-526.
  • 4Robert D.Positive solutions of singular boundary value problem[J].Nonlinear Anal,1996,27(6):645-652.
  • 5Cheng J G.On a class of singular two-point boundary value problem[J].Acta Math Scientia,2002,22A:521-526.
  • 6Liu X,Yan B.Boundary-irregular solutions to singular boundary value problems[J].Nonlinear Anal,1998,32:633-646.
  • 7Wang J,Gao W.A note on singular nonlinear two-point boundary value problems[J].Nonlinear Anal,2000,39:281-287.
  • 8Erbe L H,Mathsen R M.Positive solutions for singular nonlinear boundary value problems[J].Nonlinear Anal,2002,46:979-986.
  • 9毛安民,栾世霞.非线性特征值问题的正解[J].数学年刊(A辑),2003,24(2):167-174. 被引量:11
  • 10Agarwal R P,O'Regan D.A note on exmtence of nonnegative solutions to singular semi-positone problems[J].Nonlinear Anal,1999,36:615-622.

二级参考文献18

  • 1Lan, K. Q. & Webb, J., Positive solutions of semilinear differential equation with singularity [J], J. Diff. Equation, 148(1998), 407-421.
  • 2Keller, H. B., Some positive problems suggested by nonlinear heat generation [A], in "Bifurcation Theory and Nonlinear Eigenvalue Problems" (J. B. Keller and S. Antman Eds.) [M], 217-255, Benjiamin, Elmsfors, New York, 1969.
  • 3Guo, D. & Lakshmikantham, V., Nonlinear problems in abstract cones [M], Academic Press, San Diego, 1988.
  • 4Luiper, H. J., On positive solutions of nonlinear elliptic eigenvalue problems [J], Rend.Cire. Mat. Palenno, 20:2(1979), 113-138.
  • 5Erbe, L. H. & Hu Shouchuan, Multiple positive solutions of some boundary value problems [J], Nonlinear Anal., 184(1994), 640-648.
  • 6Garaizer, X., Existence of positive radial solutions for semilinear elliptic problems in the ammukus [J], J. Differential Equations, 70(1987), 69-72.
  • 7Guo, D. & Sun. J., Calculation and application of topological degree [J], Math. Res.Expo., 8(1988), 469--480 (in Chinese).
  • 8Ha, Ki Sik & Lee Yong-hoon, Existence of multiple positive solutions of singular boundary value problems [J], Nonlinear Anal., 28(1997), 1429-1438.
  • 9Eloe, P. W. & Henderson, Positive solutions for higher order nonlinear equations [J], J.Differential Equations, 3(1995), 1-8.
  • 10Henderson & Wang, H., Positive solutions of nonlinear eigenvalue problems [J], J. Math.Anal. Appl., 208(1997), 252-259.

共引文献16

同被引文献23

  • 1刘笑颖,孙经先.拓扑度的计算及其对超线性方程组的应用[J].系统科学与数学,1996,16(1):51-59. 被引量:11
  • 2孙经先,张国伟.奇异非线性Sturm-Liouville问题的正解[J].数学学报(中文版),2005,48(6):1095-1104. 被引量:21
  • 3NI Xiao-hong GE Wei-gao.Existence of Positive Solutions for Boundary Value Problems on the Semi-infinite Interval[J].Chinese Quarterly Journal of Mathematics,2005,20(4):380-384. 被引量:1
  • 4Agarwal R P,O'Regan D. Nonlinear superlinear singular and nonsingular second order boundary value problems[J].Journal of Differential Equations,1998,(1):60-65.doi:10.1006/jdeq.1997.3353.
  • 5Agarwal R P,O'Regan D. A coupled system of boundary value problems[J].Applicable Analysis,1998.381-385.
  • 6Liu Y S,Yan B Q. Multiple solutions of singular boundary value problems for differential systems[J].Journal of Mathematical Analysis and Applications,2003.540-556.
  • 7郭大钧;孙经先;刘兆理.非线性常微分方程泛函方法[M]济南:山东科学技术出版社,1995.
  • 8郭大钧;孙经先.非线性积分方程[M]济南:山东科学技术出版社,1987.
  • 9徐利治;王兴华.数学分析的方法及例题选讲[M]北京:高等教育出版社,1983.
  • 10孙经先.非线性泛函分析及其应用[M]北京:科学出版社,2008.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部