期刊文献+

自仿Sierpinski地毯中集合的维数

Dimensions of Sets Related to Self-affine Sierpinski Carpets
下载PDF
导出
摘要 研究广义Sierpinski地毯的两类子集,它们的编码分别具有线性制约的部分数字频率和水平纤维频率.计算这两类集合的Hausdorff维数,并给出相应的Hausdorff测度为正无穷的充分条件. The authors consider two classes of subsets of the general Sierpinski carpets for which the location codes of the points have digit frequencies or frequencies of horizontal fibers linearly constrained. They calculate the Hausdorff dimensions of these subsets and give sufficient conditions for the corresponding Hausdorff measure to be infinite.
出处 《数学年刊(A辑)》 CSCD 北大核心 2010年第2期189-202,共14页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10971069) 上海市重点学科基金(No.B407)资助的项目
关键词 数字频率 水平纤维频率 HAUSDORFF维数 Digit frequency, Frequency of horizontal fiber, Hausdorff dimension
  • 相关文献

参考文献12

  • 1McMullen C.The Hausdorff dimension of general Sierpinski carpets[J].Nagoya Math J,1984,96:1-9.
  • 2Bedford T.Crinkly curves,Markov partitions and box dimensions in self-similar sets[D].Coventry:University of Warwick,1984.
  • 3Peres Y.The packing measures of self-affine carpets[J].Math Proc Camb Phil Soc,1994,115:437-450.
  • 4Peres Y.The self-affine carpets of Mcmullen and Bedford have infinite Hausdorff measure[J].Math Proc Camb Phil Soc,1994,116:513-526.
  • 5Kenyon R,Peres Y.Measures of full dimension on affine-invariant sets[J].Ergodic Theorey Dyn Syst,1996,16:307-323.
  • 6Kenyon R,Peres Y.Hausdorff dimension of sofic affine-invariant sets[J].Isr J Math,1996,122:540-574.
  • 7King J.The singularity spectrum for general Sierpinski carpets[J].Adv Math,1995,116:1-8.
  • 8Olsen L.Self-affine multifractal Sierpinski spongs in Rd[J].Pac J Math,1998,183:143-199.
  • 9Gui Y X,Li W X.Hausdorff dimension of subsets with proportional fibre frequencies of the general Sierpinski carpets[J].Nonlinearity,2007,20:2353-2364.
  • 10Nielsen O A.The Hausdorff and packing dimension of some sets related to Sierpinski carpets[J].Can J Math,1999,51:1073-1088.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部