Gradient Estimates for the Heat Kernels in Higher Dimensional Heisenberg Groups
被引量:1
Gradient Estimates for the Heat Kernels in Higher Dimensional Heisenberg Groups
摘要
The author obtains sharp gradient estimates for the heat kernels in two kinds of higher dimensional Heisenberg groups -- the non-isotropic Heisenberg group and the Heisenberg type group Hn,m. The method used here relies on the positive property of the Bakry-Emery curvature F2 on the radial functions and some associated semigroup technics.
基金
Project supported by China Scholarship Council (No. 2007U13020)
参考文献18
-
1Bakry, D., On Sobolev and logarithmic Sobolev inequalities for Markov semigroups, New Trends in Stochastic Analysis, Charingworth, 1994, World Scientific Publishing, River Edge, 1997, 43-75.
-
2Bakry, D., Baudoin, F., Bonnefont, M., et al, On gradient bounds for the heat kernel on the Heisenberg group, J. Funct. Anal., 255, 2008, 1905-1938.
-
3Bakry, D., Baudoin, F., Bonnefont, M., et al, Subelliptic Li-Yau estimates on three dimensional model spaces, Potential Theory and Stochastics in Albac, Theta Series in Advanced Mathematics, 2009.
-
4Baudoin, F. and Bonnefont, M., The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds, Math. Z., 263(3), 2009, 647-672.
-
5Beals, R., Gaveau, B. and Greiner, P. C., Hamilton-Jacobi theory and the heat kernel on Heisenberg groups, J. Math. Pures Appl. (9), 79(7), 2000, 633-689.
-
6Bonfiglioli, A. and Uguzzoni, F., Nonlinear Liouville theorems for some critical problems on H-type groups, J. Funct. Anal., 207(1), 2004, 161-215.
-
7Davies, E. B., Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics, Yol. 92, Cambridge University Press, New York, 1989.
-
8Engoulatov, A., A universal bound on the gradient of logtithm of the heat kernel for manifolds with bounded Ricci curvature, J. Funct. Anal., 238, 2006, 518-529.
-
9Gaveau, B., Principe de moindre action, propagation de la chaleur et estimees sous elliptiques sur certains groupes nilpotents, Acta Math., 139, 1977, 95 153.
-
10Kaplan, A., Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc., 258, 1980, 147-153.
-
1袁亚雄,Crowe C.T..颗粒在非各向同性均匀湍流中的扩散(英文)[J].空气动力学学报,1992,10(2):201-209.
-
2Zifei SHEN Chenyin QIAN.Solutions and Multiple Solutions for p(x)-Laplacian Equations with Nonlinear Boundary Condition[J].Chinese Annals of Mathematics,Series B,2009,30(4):397-412.
-
3YUAN Hongjun YAN Han.Existence and Uniqueness of BV Solutions for a Class of Degenerate Boltzmann Equations with Measures as Initial Conditions[J].Journal of Partial Differential Equations,2009,22(2):127-152.
-
4Yu Xin DONG,Guo Zhen LU,Li Jing SUN.Global Poincaré Inequalities on the Heisenberg Group and Applications[J].Acta Mathematica Sinica,English Series,2007,23(4):735-744. 被引量:1
-
5ZHANG Ming Xing.Surface Sum of Heegaard Splittings[J].Journal of Mathematical Research and Exposition,2009,29(3):558-562.
-
6CUI Xiao-yue,LAM Nguyen,LU Guo-zhen.Characterizations of Sobolev spaces in Euclidean spaces and Heisenberg groups[J].Applied Mathematics(A Journal of Chinese Universities),2013,28(4):531-547. 被引量:3
-
7王凤雨.Gradient Estimates for Generalized Harmonic Functions on Riemannian Manifolds[J].Chinese Science Bulletin,1994,39(22):1849-1852.
-
8FENG Qian Qian,ZHOU Wei Gang.Cyclic Code and Self-Dual Code over F2 + uF2 + u^2F2[J].Journal of Mathematical Research and Exposition,2009,29(3):500-506. 被引量:2
-
9Liang ZHAO,Zongwei MA.Gradient Estimates for a Nonlinear Parabolic Equation with Diffusion on Complete Noncompact Manifolds[J].Chinese Annals of Mathematics,Series B,2015,36(1):57-66.
-
10何兵,应和平,季达人.X-Y-Z模型——非各向同性反铁磁Heisenberg系统的自旋波解[J].物理学报,1996,45(3):522-527. 被引量:8