摘要
提出一种基于多分类多核学习支持向量机的变压器故障诊断方法,相对于传统的2分类支持向量机,该方法有如下特点:算法针对单一的优化目标函数求解,只需设计1组参数,降低了支持向量机在解决多类问题中模型构造和参数选择的难度;核函数是多个基核函数的组合,提高了分类的精度;将模型分解为2个凸优问题进行求解,问题的复杂度低,求解速度快。诊断实例表明,该方法能保证较高的诊断准确率,具有较好的实用性和推广性。
A novel support vector machine (SVM), i.e. multiclass multiple-kernel learning support vector machine (MMKL-SVM), for the fault diagnosis of power transformers is proposed in this paper. Unlike traditional SVM that may fail under some circumstances, the fault diagnosis method based on MMKL-SVM has some good theoretical properties, e.g. it only deals with a simple objective function, and the classification results can be obtained by dil:ect calculation on the basis of a simple decision function; it can conduct calculation with an optimal kernel function composed of linear combinations of basic kernels, further boosting the overall performance; the solutions for it can be efficiently gained by iteratively solving two convex optimization functions with a low computation cost and high speed. Diagnosis test results show that the MMKL-SVM method has high classification accuracy, which proves its effectiveness and usefulness.
出处
《中国电机工程学报》
EI
CSCD
北大核心
2010年第13期128-134,共7页
Proceedings of the CSEE
基金
国家自然科学基金项目(50677062)
国家高技术研究发展计划项目(863计划)(2008AA05Z210)
新世纪优秀人才支持计划项目(NCET-07-0745)
浙江省自然科学基金项目(R107062)~~
关键词
变压器
故障诊断
支持向量机
多分类多核学习
transformer
fault diagnosis
support vector machine (SVM)
multiclass multiple-kernel learning