期刊文献+

水蒸气对选择性非催化还原反应影响的实验研究 被引量:6

Investigation on Effects of Water Vapor on Selective Non-Catalytic Reduction of NO_x
下载PDF
导出
摘要 在一管式石英反应器上实验研究水蒸气对选择性非催化还原过程脱硝效率、N2O排放、NH3泄漏等因素的影响,实验采用氨气为还原介质。结果表明,水蒸气量增加时:最佳脱硝温度、脱硝温度窗口将向高温方向偏移,温度窗口宽度将逐渐增大,最佳脱硝效率持续升高,但两者的增长幅值都持续降低;NH3泄漏曲线向高温方向稍有移动,N2O排放曲线有所升高,但升高绝对值很小。水蒸气量相同时:温度低于900℃区域,较低氨氮比时的水蒸气脱硝促进作用更显著;温度在1100℃附近时,较高氨氮比时的水蒸气脱硝促进作用更有效;温度高于1000℃但低于1100℃附近区域,水蒸气对较高氧含量工况的脱硝促进作用更为明显。 Experimental study on the influences of water vapor content on selective non-catalytic reduction (SNCR) using ammonia gas was carried out in a quartz tube reactor. The experimental results show that when the water vapor content increases: the optimum NOx reduction temperature and the NOx reduction temperature window both shift towards a higher temperature, the width of NOx reduction temperature window is widened and the optimal NOx reduction efficiency increases. The slip curves of NH3 shift little to a higher temperature and the emission curves of N2O would be somewhat higher. While there is the same water vapor content: Within temperature region lower than 900℃, the promotive effect of water vapor on NOx reduction is more notable as the ratio of NH3 to NOx is smaller. When temperature is about 1 100℃, the promotive effect of water vapor on NOx reduction is more effective as the ratio of NH3 to NOx is larger. The promotive effect of water vapor on NO. reduction is more evident as the oxygen content is larger around temperature region which is between 1 000℃ and 1 1O0℃.
出处 《中国电机工程学报》 EI CSCD 北大核心 2010年第14期50-55,共6页 Proceedings of the CSEE
基金 国家杰出青年科学基金项目(50525620) 国家重点基础研究发展计划项目(2006CB200303)~~
关键词 选择性非催化还原 NOx NH3 N2O 水蒸气 selective non-catalytic reduction NOx NH3 N2O water vapor
  • 相关文献

参考文献20

  • 1吕洪坤,杨卫娟,周志军,黄镇宇,刘建忠,周俊虎,岑可法.选择性非催化还原法在电站锅炉上的应用[J].中国电机工程学报,2008,28(23):14-19. 被引量:40
  • 2吕洪坤,杨卫娟,周俊虎,周志军,黄镇宇,岑可法.化学计量比、雾化压力对电站锅炉SNCR脱硝的影响[J].化工学报,2008,59(11):2898-2903. 被引量:19
  • 3Lodder P, Lefers J B. Effect of natural gas, C2H6 and CO on the homogeneous gas phase reduction of NOx by NH3 [J]. Chemical Engineering Journal. 1985, 30(2): 161-167.
  • 4Leckner B, Karlsson M, Dam-Johansen K, et al. Influence of additives on selective noncatalytic reduction of nitric oxide with amJnonia in circulating fluidized bed boilers[J]. Industrial and Engineering Chemistry Research. 1991, 30(11): 2396-2404.
  • 5Suhlmann J, Rotzoll G. Experimental characterization of the influence of CO on the high-temperature reduction of NO by NH3[J]. Fuel, 1993, 72(2): 175-179.
  • 6Hemberger R, Muris S, Pleban K U, et al. An experimental and modeling study of the selective noncatalytic reduction of NO by ammonia in the presence of hydrocarbons[J]. Combustion and Flame, 1994, 99(3-4): 660-668.
  • 7Alzueta M U, Rojel H, Kristensen P G, et al. Laboratory Study of the CO/NH3/NO/O2 system: implications for hybrid reburn/sncr strategies [J]. Energy&Fuels, 1997, 11(3): 716-723.
  • 8Skreiberg O, Kilpinen P, Glarborg P. Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor[J]. Combustion andFlame, 2004, 136(4): 501-518.
  • 9Bae S W, Roh S A, Kim S D. NO removal by reducing agents and additives in the selective non-catalytic reduction (SNCR) process [J]. Chemosphere, 2006, 65(1): 170-175.
  • 10Javed M T, Nimmo W, Gibbs B M. Experimental and modeling study of the effect of CO and H2 on the urea DeNOx process in a 150 kW laboratory reactor[J]. Chemosphere, 2008, 70(6): 1059-1067.

二级参考文献96

共引文献88

同被引文献110

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部