期刊文献+

泡沫金属矩形通道中对流换热的实验和模拟 被引量:15

Experimental and Numerical Simulation of the Convective Heat Transfer in a Metal-foam Filled Rectangular Channel
下载PDF
导出
摘要 实验研究和数值模拟了泡沫金属三维矩形通道内的流动和传热,引入基于渗透率的雷诺数和达西数,确定了泡沫金属对流换热和流动阻力的准则关系式,并分析了多孔结构参数和气体流速对对流换热系数、阻力系数的影响。研究结果表明:泡沫金属对流换热模拟结果与实验数据趋于一致,互为验证了可靠性;泡沫金属的换热强度和流动阻力均随孔径的减小(孔密度的增大或孔隙率的减小)而增大,大孔径的泡沫金属具有较好的对流换热综合性能;气体流速的增加有利于强化换热。 Convective heat transfer in metal-foam filled three-dimensional rectangular channels was experimentally and numerically studied. Non-dimensional Darcy and Reynolds number based on the permeability were introduced. And the empirical equations describing convective heat transfer in foam-filled channel were finally obtained. The effects of pore structural parameter and fluid velocity on the convection heat transfer coefficient and drag codfficient were further analyzed. Numerical results are in good coincidence with the experimental data, so experimental and numerical studies are proven to he reliable. It turns out that, convective heat transfer of forced flow in the channel is enhanced with smaller pore size (i.e. higher pore-distribution density or lower porosity) of metal foams, but at the expense of higher pressure drop. Metal foams with larger pore size have better overall performance on convective heat transfer. Furthermore, increasing fluid velocity enhances convective heat transfer in channels.
出处 《中国电机工程学报》 EI CSCD 北大核心 2010年第14期56-60,共5页 Proceedings of the CSEE
关键词 泡沫金属 对流换热 孔径 孔隙率 矩形通道 metal foam convective heat transfer poresize. porosity rectangular channels
  • 相关文献

参考文献14

二级参考文献51

  • 1卢涛,姜培学.多孔介质融化相变自然对流数值模拟[J].工程热物理学报,2005,26(z1):167-170. 被引量:44
  • 2王爱华,梁新刚,任建勋.航天器短时大功率排热系统质量分析[J].清华大学学报(自然科学版),2004,44(8):1130-1133. 被引量:6
  • 3Alva L H, Gonzalez J E, Dukhan N. Initial Analysis of PCM Integrated Solar Collectors. Journal of Solar Energy Engineering, 2006, 128(5): 173-177
  • 4Xavier P, Olives R, Sylvain M. Paraffin/Porous Graphite Matrix Composite as a High and Constant Power Thermal Storage Material. International Journal of heat and Mass Transfer, 2001, 44(14): 2727-2737
  • 5Bugaje M I. Enhancing the Thermal Response of Latent Heat Storage Systems. Int. J. Enexgy Res., 1997, 21: 79546
  • 6Krishnan S, Jayathi Y M, Suresh V G. A Two- Temperature Model for the Analysis of Passive Thermal Control Systems. Journal of Heat Transfer, 2004, 126(8): 628637
  • 7Maxwell J C. A Treatise on Electricity and Magnetism. Oxford: Clarendon Press, 1873:365.
  • 8Rayleigh L. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Philos Mag, 1892, 34.. 481.
  • 9Hunt M L, Tien C L. Effects of thermal dispersion on forced convection in fibrous media. Int J Heat Mass Transfer, 1988, 31 (2) ; 301.
  • 10Tien C L, Vafai K. Statistical bounds for the effective thermal conductivity of microsphere and fibrous insulation. AIAA Prog Ser,1979, 65:135.

共引文献132

同被引文献121

引证文献15

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部