期刊文献+

基于经验模态分解的高光谱遥感数据去噪方法 被引量:2

De-Nosing Method of Hyperspectral Data Based on EMD
下载PDF
导出
摘要 经验模态分解(EMD)是一种新的时频分析方法,经EMD分解后的各个固有模态函数(IMF)突出了原始信号的局部特征,从而可以区分噪声和有用信号。基于此,结合高光谱遥感数据的光谱变化特征,提出了一种基于经验模态分解的高光谱遥感数据去噪方法。通过对理论数据的实验表明,数据中的噪声无论是高斯分布还是均匀分布,数据经EMD分解后,噪声都主要集中在前几个特定的IMF,对相应的IMF进行滤波处理后并与其他IMF分量进行重构就可得到去噪信号,与小波去噪结果相比较,这种方法效果更好。最后把该去噪方法应用于野外实测的油膜高光谱数据去噪,实验结果表明,该方法能准确、有效地去除高光谱遥感数据的噪声。 Empirical mode decomposition (EMD) is a relatively new time-frequency analysis method.IMFs were developed by EMD outstand local characteristics of the original signal,so they can discriminate the signals from the noise.An EMD based approach to hyperspectral data de-noising is proposed in the work.The simulative experiment with theoretical data shows that Gaussian-distributed noise or uniform-distributed noise inhered in the data is mainly concentrated in the first few specific IMFs.Therefore,the filtered noise-related IMFs together with the other IMFs can be used to restructure the denoised signal.Experimental result shows that the proposed method is more effective than wavelet-based method.Finally,this method is applied to denoise field oil-slick hyperspectral data and the results show that the method can denoise the inherent noise in hyperspectral data accurately and effectively.
出处 《光谱实验室》 CAS CSCD 北大核心 2010年第3期940-944,共5页 Chinese Journal of Spectroscopy Laboratory
基金 国家自然科学基金资助项目(40672095)
关键词 经验模态分解 固有模态函数 高光谱 去噪 Empirical Mode Decomposition Intrinsic Mode Function Hyperspectral De-Noising
  • 相关文献

参考文献10

二级参考文献36

  • 1周晚林,王鑫伟.Hilbert变换在压电智能结构冲击定位中的应用[J].振动与冲击,2004,23(3):124-127. 被引量:8
  • 2杨宇,于德介,程军圣.基于Hilbert边际谱的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):70-72. 被引量:78
  • 3章孝灿 黄智才 等.遥感数字图像处理[M].杭州:浙江大学出版社,1996.115-184.
  • 4Boardman J W, Kruse F A. Automated spectral analysis: a geological example using AVIRIS data, north Grapevine Mountains, Nevada[A]. Proceedings of the Tenth ERIM Thematic Conference on Geologic Remote Sensing(I)[C]. 1994: 407-418.
  • 5Roger R E, Arnold J F. Reliably estimating the noise in AVIRIS hyperspectral images[J]. International Journal of Remote Sensing,1996,17(10):1951-1962.
  • 6Gao B C.An Operational Method for Estimating Signal to Noise Ratios from Data Acquired with Imaging Spetrometers [J].Remote Sensing of Environment,1993,43(1).
  • 7Eklundh L R. Noise estimation in NOAA AVHRR maximum value composite NDVI images[J]. International Journal of Remote Sensing,1995,16(15):2955-2962.
  • 8Gao B C, Heidebrecht K H, Goetza A F H. Derivation of scaled surface reflectance from AVIRIS data[J]. Remote Sensing of Environment, 1993.44(2-3):165-178.
  • 9范明 柴玉梅 昝红英.统计学习基础[M].北京:电子工业出版社,2004..
  • 10童庆禧.电子光学遥感系统的过去、现在和未来[A]..遥感科学新进展[C].北京:科学出版社,1995..

共引文献76

同被引文献15

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部