期刊文献+

闭无爪图在圈闭包运算下哈密尔顿指数的稳定性 被引量:1

On Stability of the Hamiltonian Index Under Cycle Closure
原文传递
导出
摘要 无爪图在闭包运算下,其哈密尔顿指数是稳定的.近来Broersma等又提出了无爪图闭包的加强定义-圈闭包.本文主要证明闭无爪图G在圈闭包运算下,其哈密尔顿指数是稳定的. It was proved that the hamiltonian index of a claw-free graph is stable under closure operation invented by Ryjacek.Recently,Broersma et al.defined the concept of cycle closure on claw-free graphs,which strengthens the closure concept.In this paper,we prove that the hamiltonian index of closed claw-free graph is stable under the cycle closure operation.
出处 《应用数学学报》 CSCD 北大核心 2010年第3期424-431,共8页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10671014)资助项目
关键词 闭包 稳定性 圈闭包 哈密尔顿指数 closure stability cycle closure of a graph hamiltonian index
  • 相关文献

参考文献5

  • 1Bondy J A,Murty U S R.Graph Theory with Applications.London,Elsevier,New York:Macmillan,1976.
  • 2Xiong L,Ryjá(c)ek Z,Broersma H.On Stability of the Hamiltonian Index under Contractions and Closures.J.Graph Theory,2005,49:104-115.
  • 3Broersma H J,Ryjak Z.Strengthening the Closure Concept in Claw-free Graphs.Discrete Math.,2001,233:55-63.
  • 4Harary F,Nash-Williams C St.J A.On Eulerian and Hamiltonian Graphs and Line Graphs.Canad Math.Bull,1965,8:701-709.
  • 5Xiong L,Liu Z.Hamiltonian Iterated Line Graphs.Discrete Math.,2002,256:407-422.

同被引文献28

  • 1Bondy J A, Murty U S R. Graph theory with applications [ M ]. New York : American Elsevier, 1976.
  • 2Clark L H, Wormald N C. Hamiltonian-like indices of graphs [ J]. Ars Combinatoria, 1983,15 : 131-148.
  • 3Harary F,Nash-Williams C St J A. On Eulerian and Hamiltonian graphs and line graphs [ J ]. Canad Math Bull, 1965,8(6) :701-709.
  • 4Chartrand G, Wall C E. On the Hamihonian index of a graph [ J]. Studia Sci Math Hungar, 1973,8:43-48.
  • 5Xiong Liming, Liu Zhanhong. Hamihonian iterated line graphs [ J ]. Discrete Math ,2002,256 (1/2) :407-422.
  • 6Sarazin M L. A simple upper bound for the Hamihonian index of a graph [ J ]. Discrete Math, 1994,134 ( 1/2/5 ) : 85-91.
  • 7Xiong Liming, Broersma H J, Li Xueliang, et al. The Hamiltonian index of a graph and its branch-bonds [ J ]. Discrete Math ,2004,285 ( 1/2/3 ) :279-288.
  • 8Yi Hong, Lin Jianliang, Tao Zhisui, et al. The Hamihonian index of graphs [ J ]. Discrete Math, 2009,309 ( 1 ) : 288- 292.
  • 9Xiong Liming, Yan Huiya. On the supereulerian index of a graph [ J ]. Journal of Beijing Institute of Technology, 2005,14( 5 ) :453-457.
  • 10Gould R, Hynds E. A note on cycles in 2-factors of line graphs [ J]. Bull ICA 1999,26:4648.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部