期刊文献+

化学还原-球磨法制备Sn-Co-C锂离子电池负极材料的性能

Performance of Sn-Co-C negative electrode material for Li-ion batteries prepared by chemical reduction and ball-milling
原文传递
导出
摘要 采用化学还原法得到纳米级Sn-Co粉末,再经过与硬碳粉混合球磨得到Sn-Co-C复合粉体。能谱测试表明,样品Sn、Co、C原子分数分别为3.89%、1.47%、94.64%。SEM观察显示,50-100 nm锡钴微粒附着在片状的硬碳颗粒上。复合粉体与锂片组成模拟电池,首次放电比容量为558.4 mAh/g,首次充电比容量为338.5 mAh/g。30次循环后,放电比容量保持在348.2 mAh/g,保持率为62.4%;充电比容量保持在335.4 mAh/g,保持率为99.1%。充放电比容量较硬碳提高3倍左右。由分析放电曲线可知,第一次放电后在电极表面形成了固体电解质界面膜(SEI)膜,循环一次后该膜消失。 Sn-Co-C compound powder was prepared by ball milling with hard carbon powder and nanosized Sn-Co powder,prepared by chemical reduction.The EPMA results show that the atomic percentages of Sn/Co/C in Sn-Co-C compound powder are 3.89%,1.47%,94.64% respectively.SEM images show that Sn-Co grains,being 50~100 nm sized,are dispersed on the surface of carbon powder.The simulation cells consist of Sn-Co-C compound powder and Li piece.The initial discharge specific capacity is 558.4 mAh/g and remains 348.2 mAh/g after 30 cycles.The initial charge specific capacity is 338.5 mAh/g and remains 335.4 mAh/g after 30 cycles.The charge-discharge specific capacity is about 3 times higher than that of hard carbon electrode.It was suggested that the solid electrolyte interface(SEI) films were formed on the surface of Sn-Co-C electrode after the first discharge,but disappeared after the first cycle by analysis of the discharge curve.
作者 许琨 于维平
出处 《金属热处理》 CAS CSCD 北大核心 2010年第5期11-14,共4页 Heat Treatment of Metals
基金 国家高技术研究发展计划(2006AA03Z230) 北京市自然科学基金(2062014)
关键词 化学还原 球磨 SN-CO-C 负极材料 锂离子电池 chemical reduction ball milling Sn-Co-C negative material Li-ion batteries
  • 相关文献

参考文献17

  • 1Aurbach D,Gnanaraj J S,Levi M D ,et al. On the co, relation among surface chemistry,3D structure, morphology, electrochemical and indepedance behavior of various lithiated carbon electrodes [ J ]. Journal of Power Sources,2001,97-98:92-96.
  • 2Yoon S,Park C M, Kim H, et al. Electrochemical properties of Si-Zn-C composite as an anode material for lithium ion batteries [ J ]. Journal of Power Sources,2007,167 ( 2 ) : 520-523.
  • 3Sivashanmugam A, Kumar T P, Renganathan N G, et al. Electrochemical behavior of Sn/SnO2 mixtures for use as anode in lithium rechargeable batteries [ J ]. Journal of Power Sources,2005,144 (1) : 197-203.
  • 4Zuo P J, Yin G P. Si-Mn composite anodes for lithium ion batteries [ J ]. Journal of Alloys and Compounds,2006,414(1-2) :265-268.
  • 5Khomenko V G, Barsukov V Z. Characterization of silicon- and carbonbased composite anodes for lithium-ion batteries [ J ]. Electrochimica Acta, 2007,52 (8) : 2829 -2840.
  • 6Li W Y,Xu L N and Chen J. Co3O4 nanomaterials in lithium-ion batteries and gas sensors [ J]. Advanced Functional Materials,2005,15 (5) :851-857.
  • 7Kang Y M, Kim K T, Kim J H, et al. Electrochemical properties of Co3O4, Ni-Co3O4 mixture and Ni-Co3O4 omposite as anode materials for Li ion secondary batteries [ J ]. Journal of Power Sources, 2004,133 (2) :252-259.
  • 8Zhang C Q, Tu T P, Yuan Y F, et al. Electrochemical performances of Ni-coated ZnO as an anode material for lithium-ion batteries [J]. Journal of the Electrochemical Society,2007,154(2) :A65-A69.
  • 9Sha Z W, Huang H, Zhu X J, et al. Effects of dopant on the electrochemical performance of Li4 Ti5 O12 as electrode material for lithium ion batteries [ J ]. Journal of Power Sources ,2007,165 ( 1 ) :408412.
  • 10Pu W H, He X M, Ren J G, et al. Electrodeposition of Sn-Cu alloy anodes for lithium batteries [ J ]. Electrochimica Acta, 2005,50 ( 20 ) : 4140-4145.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部