期刊文献+

H62黄铜模压形变的有限元模拟 被引量:2

Finite element method simulation in groove pressing of H62 brass
原文传递
导出
摘要 用二维有限元法(FEM)模拟H62黄铜模压形变(GP)过程,根据有限元模型进行模压形变试验,分析试样等效应变的分布规律与模压形变试验后材料的组织和力学性能的关系。研究发现,试样累积的等效应变值随模压周期的增加而增加,等效应变的累积速率接近恒值,而试样表面的累积速率高于试样中心;获得的等效应变比理论应变值低。模压形变使H62黄铜晶粒细化,显微硬度提高;等效应变的分布规律与材料的组织和性能变化相对应。 A two-dimensional finite element method(FEM) was used in the simulation of groove pressing(GP) of H62 brass.Groove pressing experiments were conducted according to the FEM model.The relationship between the distribution of the equivalent strain and the structure and mechanical characteristics of the sample was analyzed.It is found that the equivalent strain increases as the increasing of the groove pressing cycles.The speed of the equivalent strain accumulated is almost constant,and the speed on the sample surface is higher than that of the center.The equivalent strain value is lower than that of the theoretical value.Proceed by the groove pressing,the grain of H62 brass is refined and the microhardness is increased.So the distribution of the equivalent strain has relation to the structure and mechanical characteristics of the sample.
出处 《金属热处理》 CAS CSCD 北大核心 2010年第5期83-87,共5页 Heat Treatment of Metals
基金 福建省科技厅重点项目(2009H0023) 福建省教育厅资助项目(JB07027)
关键词 H62黄铜 有限元 模压形变 等效应变 H62 brass finite element method groove pressing equivalent strain
  • 相关文献

参考文献11

  • 1Valiev R Z, Islamgaliev R K, Semenova I P. Superplasticity in nanostructured materials : New challenges [J ]. Materials Science and Engineering : A ,2007,463 ( 1-2 ) :2-7.
  • 2Islamgaliev R K, Yunusova N F, Valiev R Z, et al. Characteristics of superplasticity in an uhrafine-grained aluminum alloy processed by ECA pressing [ J ]. Scripta materialia ,2003,49 ( 5 ) :467472.
  • 3Li Y S,Tao N R,Lu K. Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures [ J ]. Acta Materialia ,2008,56 ( 2 ) :230-241.
  • 4Kommel L, Hussainova I, Volobueva O. Microstructure and properties development of copper during severe plastic deformation [ J ]. Meterials and Design,2007,28(7) :2121-2128.
  • 5Shin D H,Park J J,Kim Y S,et al. Constrained groove pressing and its pressing and its application to grain refinement of aluminum[J]. Materials Science and Engineering : A ,2002, A328 ( 1-2 ) :98-103.
  • 6Krishnaiah A,Chakkingal U, Venugopal P. Production of ultrafine grain sizes in aluminum sheets by severe plastic deformation using the technique of groove pressing [ J ].Scripta Materialia, 2005,52 ( 12 ) : 1229- 1233.
  • 7Lee J W, Park J J. Numerical and experimental investigation of constrained groove pressing and rolling for grain refinement [ J ]. Journal of Materials Processing Technology,2002,130-131:208-213.
  • 8Drnek J, Zrnik J, Cieslar M, et al. Microstructure development in pure aluminium processed by constrained groove pressing [ J ]. Kovove Materialy,2006,44 ( 5 ) :267-273.
  • 9Zrnik J, Kovarik T, Novy Z, et al. Uhrafine-grained structure development and deformation behavior of aluminium processed by constrained groove pressing [ J ]. Materials Science and Engineering : A, 2009,503 (1-2) :126-129.
  • 10PENG Kaipeng, SU Lifcng, Shaw E L, Qian K W. Grain refinement and crack prevention in constrained groove pressing of two-phase Cu-Zn alloys [ J ]. Scripta Materialia, 2007,56 ( 11 ) : 987-990.

同被引文献19

  • 1苏丽凤,彭开萍,肖林钢.反复模压变形法细化H62黄铜的研究[J].机械工程材料,2007,31(7):15-18. 被引量:6
  • 2F. Khodabakhshi,M. Kazeminezhad,A.H. Kokabi.Constrained groove pressing of low carbon steel: Nano-structure and mechanical properties[J].Materials Science & Engineering A.2010(16)
  • 3Kaiping Peng,Ying Zhang,Leon L. Shaw,K.-W. Qian.Microstructure dependence of a Cu–38Zn alloy on processing conditions of constrained groove pressing[J].Acta Materialia.2009(18)
  • 4C.X. Huang,W. Hu,G. Yang,Z.F. Zhang,S.D. Wu,Q.Y. Wang,G. Gottstein.The effect of stacking fault energy on equilibrium grain size and tensile properties of nanostructured copper and copper–aluminum alloys processed by equal channel angular pressing[J].Materials Science & Engineering A.2012
  • 5Z.J. Zhang,Q.Q. Duan,X.H. An,S.D. Wu,G. Yang,Z.F. Zhang.Microstructure and mechanical properties of Cu and Cu–Zn alloys produced by equal channel angular pressing[J].Materials Science & Engineering A.2011(12)
  • 6Ehab A. El-Danaf,Ayman Al-Mutlaq,Mahmoud S. Soliman.Role of stacking fault energy on the deformation characteristics of copper alloys processed by plane strain compression[J].Materials Science & Engineering A.2011(25)
  • 7M. Kazeminezhad,E. Hosseini.Optimum groove pressing die design to achieve desirable severely plastic deformed sheets[J].Materials and Design.2009(1)
  • 8Alexander P. Zhilyaev,Terence G. Langdon.Using high-pressure torsion for metal processing: Fundamentals and applications[J].Progress in Materials Science.2008(6)
  • 9S. Qu,X.H. An,H.J. Yang,C.X. Huang,G. Yang,Q.S. Zang,Z.G. Wang,S.D. Wu,Z.F. Zhang.Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing[J].Acta Materialia.2008(5)
  • 10Shin D H,Park J J,Kim Y S,et al.Constrained groove pressing and its application to grain refinement of aluminum[J].Materials and Science Engineering A,2002,328:98-103.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部