期刊文献+

工艺条件对高比表面积石墨电化学性能影响 被引量:2

Influence of technology on electrochemical performance of high specific surface area artificial graphite for lithium ion batteries
下载PDF
导出
摘要 锂离子电池以其高容量、长循环寿命、高安全性的显著特点得到越来越多的关注,高容量是锂离子电池发展的必然趋势。对一种用于锂离子电池负极的比表面积高达4m2/g的人造石墨的物性指标、结构、电化学性能进行了分析,并对电解液及添加剂、工艺条件对负极材料电化学性能的影响进行了相关研究,为实现以此材料为负极的高能量密度锂离子电池产业化应用提供一定的指导作用。结果表明,这种高比表面积的人造石墨具有特殊的微孔结构,含有的活性部位增多,反应面积增大,提高活性材料的利用率,表现出高容量和高倍率性能。 Presently lithium ion battery has won more and more attentions for its characters such as high specific capacity, excellent cycle performance, safety, and etc. Among all these characters, high specific capacity is the most important. The physical properties, structure and electrochemical performance of an artificial graphite with a high surface area of 4 m2/g were analyzed. The effects of electrolyte, additive, and manufacture technology on the electrochemical performance of anode were investigated to realize the commercialized application of this material. The results show that the graphite has a special microspore structure, high specific capacity and high power performance. This special structure improves the inhomogeous property and increases the route for lithium diffusion, which improves the utilization ratio of the active material and is the reason that the material has high specific capacity and power.
出处 《电源技术》 CAS CSCD 北大核心 2010年第5期446-449,共4页 Chinese Journal of Power Sources
关键词 锂离子电池 高比表面积 人造石墨 工艺分析 lithium-ion battery high surface area artificial graphite technical analyze
  • 相关文献

参考文献9

  • 1SATO K,NOGUCHI M,DEMACHI A, et al.A mechanism of lithium storage in disordered carbons[J]. Science, 1994,264:556.
  • 2ROH Y B, JEONG K M, DAM K,et al. Unique charge/discharge properties of carbon materials with different structures [J]. J Power sources, 1997,68:271-276.
  • 3SIMON B,FLANDROIS S,GUERIN K,et al.On the choice of graphite for lithium ion batteries [J]. J Power sources, 1999,81/82: 312-316.
  • 4FLANDROIS S, FEBRIER A, PHILIPPE B, et al. Carbon anode for a lithium rechargeable electrochemical cell and a process for its production: US,5554462 [P]. 1966.9.10.
  • 5KATIA G, ANNIE F B, SERGE F, et al. Effect of graphite crystal structure on lithium electrochemical intercalation [J]. J Electrochemical Society, 1999, 146(10):3660-3665.
  • 6MARKOVSKY B, MIKHAIL D, AURBACH D. The basic electro analytical behavior of practical graphite-lithium intercalation electrode [J]. Electrochemical Acta, 1998,44(16/17):2287-2304.
  • 7WAN C S, APPLEBY A J. Electrochemical impedance study of initial lithium ion intercalation into graphite powders [J]. Electrochemical Acta, 2001, 46:1793-1813.
  • 8JIANG W, NADEAU G, ZAGHIB K, et al. Thermal analysis of the oxidation of natural graphite-effect of particle size [J].Thermo-chimica Acta,2000, 351:85-93.
  • 9KOLTYPIN M, COHEN Y S. The study of lithium insertiondeinsertion processes into composite graphite electrodes by in situ atomic force microscopy (AFM) [J]. Electrochemistry Communications, 2002, 4: 17-23.

同被引文献16

  • 1金明钢.阴极导电剂含量对锂离子蓄电池性能的影响[J].电源技术,2005,29(2):78-79. 被引量:9
  • 2CHANG J C, TZENG T Y, CHEN J M, et al. Carbon nanobeads as an anode material on high rate capability lithium ion batteries [J]. Electrochimica Acta, 2009, 54(27): 7066-7070.
  • 3SHAJUA K M, BRUCE P G. Macroporous Li(Ni1/3Co1/3Mnl/3)O2: A high-rate positive electrode for rechargeable lithium batteries [J]. J Power Sources, 2007, 174(2): 1201-1205.
  • 4KONAROVAA M, TANIGUCHI I. Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondarybatteries[J]. J Power Sources, 2010, 195(11): 3661-3667.
  • 5GAO J,YING J R,JIANG CY,et al.High-density spherical Li4Ti5O12/C anode material with good rate capability for lithium ion batteries[J]. J Power Sources, 2007, 166(1):255-259.
  • 6ZHU N, LIU W, XUE M Q, et al. Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries[J]. Electrochimica Acta, 2010, 55(20): 5813- 5818.
  • 7WANG G P, ZHANG Q T, YU Z L, et al. The effect of different kinds of nano-earbon conductive additives in lithium ion batteries on the resistance and electrochemical behavior of the LiCoO2 com- posite cathodes[J]. Solid State Ionics, 2008, 179(7/8):263-268.
  • 8HUANG S H, WEN Z Y, YANG X L. Improvement of the high-rate discharge properties of LiCoO2 with the Ag additives [J]. J Power Sources, 2005, 148(1): 72-77.
  • 9TOBISHIMA S,ARAKAWA M,YAMAKI J. Ethylene carbonate/ linear-structured solvent mixed electrolyte systems for high-rate se- condary lithium batteries[J]. Electrochimica Acta, 1999, 35(2): 383- 388.
  • 10CONTESTABILE M, MORSELLI M, PARAVENTI R.A comparative study on the effect of electrolyte/additives on the performance of ICP383562 Li-ion polymer (soil-pack) cells[J]. J Power Sources, 2003, 119-121:943-947.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部