期刊文献+

基于PSO与LS-SVM的飞机总体设计的综合论证 被引量:3

Study on Intelligent Evaluation for Airplane Design Based on PSO and LS-SVM
下载PDF
导出
摘要 研究小样本数据对飞机武器系统的设计和改型方案是航空系统工程的重要内容。针对提高设计的进度和质量问题,利用粒子群优化算法的群体智能优化理论与最小二乘回归支持向量机的回归思想,提出了一种基于粒子群算法与最小二乘回归支持向量机的飞机设计综合智能论证模型。提出应用粒子群算法对支持向量机核函数参数进行寻优,再利用优化的核函数参数支持向量机回归模型,建立映射模型来对飞机的作战效能进行预测。仿真实例验证了方法的适用性和结果的可靠性。 The evaluation on design or approach of aerial weapon system is one of important research field for aerial system engineering. Based on the idea of swarm optimization of the particle swarm optimization (PSO) and regression of the least squares support vector machine ( LS - SVM ), a kind of evaluation model of airplane design based on PSO and LS - SVM has been presented. The parameters in LS - SVM are optimized by PSO, so the best regression model of LS - SVM can be determined. Afterwards the non - linearity mapping model between the mostly factors of airplane intelligent evaluation and LS -SVM is established and the cost forecasting is performed. The simulation ex- ample shows that the model is applicable and reliable.
出处 《计算机仿真》 CSCD 北大核心 2010年第5期62-65,共4页 Computer Simulation
关键词 智能论证 飞机设计 最小二乘支持向量机 粒子群算法 Intelligent evaluation Airplane design Least squares support vector machine Particle swarm optimization
  • 相关文献

参考文献5

二级参考文献31

  • 1刘芳,李人厚.基于模糊进化规划和分层方法的神经网络设计方法[J].信息与控制,2004,33(4):385-388. 被引量:3
  • 2张丽平,俞欢军,陈德钊,胡上序.粒子群优化算法的分析与改进[J].信息与控制,2004,33(5):513-517. 被引量:85
  • 3Pareto V.Cours D'Economic Politique,volume I and Ⅱ [M].F Rouge,Lausamme, 1896.
  • 4E Zitzler.Evolutionary algorithms for multiobjective optimization: methods and applications[D].Ph D thesis.Swiss Federal Institute of Technology,Zurich, 1999.
  • 5J Kennedy,R C Eberhart.Particle Swarm Optimization[C].In:Proc IEEE International Conference on Neural Networks, 1995.
  • 6R C Eberhart,Y Shi.Partiele swarm opt mization:developments,applications and resources[C].In:Proc,Congress on Evolutionary Computation 2001, Piscataway, NJ:IEEE Press,2001:81-86.
  • 7C A Coello Coello,M S Lechuga. MOPSO: A proposal for multiple objective particle swarm optimization[C]JrrIEEE Congress on Evolutionary Computation (CEC 2002 ), Honolulu, Hawaii, USA, 2002:1051 - 1056.
  • 8C A Coello Coello,G T Pulido, M S Lechuga. Handling multiple objectives with particle swarm optimization[J].IEEE Trans on Evolutionary Computation, 2004;8(3) :256-279.
  • 9K E Parsopoulos,M N Varhatis. Particle swarm optimization method in multiobjective problems[C].In : Proc, ACM Symp on Applied Computing,Madrid, Spain, 2002:603-607.
  • 10X Hu,R C Eberhart.Muhiobjective using dynamic neighborhood particle swarm optimization[C].In:Proc,Congress Evolutionary Compution, Honolulu,Hawaii, USA, 2002:1677-1681.

共引文献212

同被引文献20

  • 1张红梅,卫志农,龚灯才,刘玲.基于粒子群支持向量机的短期电力负荷预测[J].继电器,2006,34(3):28-31. 被引量:28
  • 2VapNik V N.An overview of statistical learning theory[J].IEEE Trans Neural Networks,1999,10(5):88-999.
  • 3Kennedy J,Eberhart R.Particle Swarm Optimization[A].IEEE International Conference on Neural Networks,IEEE Service Center[C],Piscataway,NJ,1995,IV:1942-1948.
  • 4陈春兰,曾黄麟.一种基于遗传算法的单神经元PID控制器参数优化[J].四川理工学院学报(自然科学版),2007,20(4):4-6. 被引量:3
  • 5M. Nasri, H. Nezamabadi-pour, M. Maghfoori. A PSO-based Opti- mum Design of PID Controller for a Linear Brushless DC Motor[ C ]. World Academy of Science, Engineering and Technology, 2007: 211 -215.
  • 6Wei Tao, Zhang Shunyi. Active Queue Management Based on Single Neural Adaptive PID Algorithm[ C]. Computer Science and Software Engineering, 2008 International Conference, 2008 : 923 - 926.
  • 7Li Jinmei, Liu Xingqiao, Chenchong, et al. Application of an Adap- tive Controller with a Single Neuron in Control of Multi-motor Syn- chronous System [ C ]. Industrial Technology, IEEE International Conference, 2008 : 1 -6.
  • 8Premalatha K, Natarajan A. M.. Procreant PSO for Document Clus- tering[ C ]. Computing, Communication and Networking, Interna- tional Conference, 2008 : 1-2.
  • 9张相军.无刷直流电机无位置传感器控制技术的研究[D].上海大学,2001.
  • 10夏长亮,刘丹,王迎发,张茂华.基于模糊规则的无刷直流电机免疫PID控制[J].电工技术学报,2007,22(9):68-73. 被引量:34

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部