期刊文献+

基于新阈值函数去噪及SVM的建模方法研究 被引量:1

Study of Modelling Based on a New Kind of Thresholding Function's De-Noising and SVM
下载PDF
导出
摘要 研究谷氨酸发酵生产过程中采集到的数据信号通常具有随机性和非平稳性,中间附加了各种噪声,以至于影响数据建模的拟合效果和泛化性能。利用小波分析的特点,在研究D.L.Donoho和I.M.Johnstone提出的小波阈值去噪方法的基础上,采用了一种新的阈值函数去噪方法。新阈值函数在整个定义域内统一定义,表达式简单易于计算,同软阈值函数一样具有连续性,而且是高阶可导的,便于进行各种数学处理。将方法与支持向量机(SVM)相结合对谷氨酸发酵过程进行建模。仿真结果表明,上述方法能有效恢复数据的真实性,所建SVM模型具有较高的拟合能力,且预测误差小,稳健性好。 The data gathered from the fermentation production process have the nonstationary and random nature. The data contain different noises inevitably, which will affect the fitting and generalization capability in data modelling. To resolve the problem, a novel thresholding function is presented based on the wavelet shrinkage put forward by D. L. Donoho and I. M. Johnstone and has many advantages over traditional thresholding functions. Comparing with the traditional thresholding functions, it is simpler in expression, as continuous as the soft - thresholding function, and has a higher order derivative which makes some kinds of mathematical disposals convenient. Combined the method with Support Vector Machines and applied to a modelling of glutamate fermentation, the experimental results indicate that it is effective to regain the factuality of the data. The model based on SVM has higher fitting abilities and less prediction errors.
出处 《计算机仿真》 CSCD 北大核心 2010年第5期84-87,共4页 Computer Simulation
基金 863项目(2006AA020301)
关键词 小波阈值去噪 阈值函数 支持向量机 发酵 建模 Wavelet shrinkage Thresholding function Support vector machines (SVM) Fermentation Modeling
  • 相关文献

参考文献14

  • 1S Mallat, W L Hwang. Singularity detection and processing with wavelets [ J ]. IEEE Transactions on Information Theory. 1992,38(2) :617 -643.
  • 2R R Coifman, D L Donoho. Translation- invariant denoising, wavelet and statistics [ M ]. NewYork: Springer - Verlag, 1995. 125 - 150.
  • 3文莉,刘正士,葛运建.小波去噪的几种方法[J].合肥工业大学学报(自然科学版),2002,25(2):167-172. 被引量:154
  • 4D L Donoho, I M Johnstone. Adapting to unknown smoothness via wavelet shrinkage [ J ]. Journal of American Stat. Assoc. , 1995, (12) : 1200 -1224.
  • 5D L Donoho. De - Noising by Soft - Thresholding [ J ]. IEEE Transactions on information theory, 1995,41 ( 3 ) :613 - 627.
  • 6张维强,宋国乡.基于一种新的阈值函数的小波域信号去噪[J].西安电子科技大学学报,2004,31(2):296-299. 被引量:187
  • 7V N Vapnik. The nature of statistical learning theory [ M ]. New York : Springer - Verlag, 1995.
  • 8V N Vapnik. Statistical learning theory[ M]. New York: Springer, 1998.
  • 9A D Sanchez. Advanced support vector machines and kernel methods[ J]. Neurocomputing, 2003,55 ( 1 ) :5 - 20.
  • 10杜树新,吴铁军.用于回归估计的支持向量机方法[J].系统仿真学报,2003,15(11):1580-1585. 被引量:140

二级参考文献50

  • 1孙西,金以慧,方崇智,张纪锋.双线性系统的自校正控制[J].自动化学报,1993,19(3):279-289. 被引量:6
  • 2彭玉华,汪文秉.小波用于估测散射波波达时间及去噪[J].电子学报,1996,24(4):113-116. 被引量:18
  • 3[1]Donoho,D.L,Johnstone,I.M.Adapting to unknown smoothness via wavelet shrinkage.J.Am.Statist Ass.,1995,90(432):1200~1224.
  • 4[2]Bruce,A.G.&Gao,H.-Y.Waveshrink with firm shrinkage.Statist.Sinica,1997,4:855~874.
  • 5Vapnik V N. Statistical learning theory[M]. New York, 1998.
  • 6Scholkoph B, Smola A J, Bartlett P L. New support vectoral gorithms[J]. Neural Computation, 2000, 12:1207-1245.
  • 7Suykens J A K, Branbanter J K, Lukas L, et al. Weighted least squares support vector machines: robustness and spare approximation [J]. Neurocomputing, 2002, 48(1): 85-105.
  • 8Lin C-F, Wang S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2): 464-471.
  • 9Tay F E H, Cao L J. Modified support vector machines in financial time series forecasting[J]. Neurocomputing, 2002, 48: 847-861.
  • 10Tay F E H, Cao L J. ε-Descending support vector machines for financial time series forecasting[J]. Neural Processing Letters, 2002, 15(2): 179-195.

共引文献513

同被引文献11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部